Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 72(1): 219-25, 2009 May.
Article in English | MEDLINE | ID: mdl-19027853

ABSTRACT

Oligo-arginines are cell-penetrating peptides and find use as carriers for transportation of various membrane-impermeable biopharmaceuticals into target cells. We have found that oligo-arginines of a length of 4-10 amino acids, but especially (Arg)(8), are able to inhibit the major intracellular proteolytic system, the proteasome, with mixed-type inhibition characteristics. The IC(50) values of (Arg)(8) for the proteasomal chymotrypsin-like and caspase-like activities are approximately 100 and 200 nM, respectively. The inhibition of the trypsin-like activity never exceeds 50% even at micromolar concentrations. (Arg)(8) also inhibits 20S proteasome/PA28 complexes as well as 26S proteasomes, although with a decreased efficiency. Due to its cell membrane-penetrating capability, incubation of HeLa cells in the presence of (Arg)(8) resulted in an impaired activity of proteasomes going along with an accumulation of high-molecular mass ubiquitin-conjugated proteins, the preferred substrates of 26S proteasomes. The in vivo susceptibility of the three proteasome activities resembles that found in vitro with chymotrypsin-like>caspase-like>trypsin-like activities. Since inhibition of the proteasome system might affect fundamental basic cellular processes but on the other side might also prevent the degradation of a proteinacous cargo, we suggest that this proteasome inhibitory activity should be taken into account when oligo-arginines are being considered for use as vectors for the intracellular delivery of pharmaceuticals.


Subject(s)
Chemistry, Pharmaceutical/methods , Oligopeptides/chemistry , Proteasome Inhibitors , Animals , Drug Carriers , Drug Design , Erythrocytes/drug effects , HeLa Cells , Humans , Muscle, Skeletal/drug effects , Peptides/chemistry , Proteasome Endopeptidase Complex/chemistry , Rats , Technology, Pharmaceutical/methods , Ubiquitin/chemistry
2.
J Mol Biol ; 329(1): 9-14, 2003 May 23.
Article in English | MEDLINE | ID: mdl-12742014

ABSTRACT

Specific labelling with monoclonal antibodies reveals that in regulator-proteasome complexes the asymmetric 19S regulator (PA700) binds to one or both terminal alpha-disks of the cylinder-shaped 20S core proteasome in such a way that its reclining front part is positioned in the vicinity of proteasome subunit alpha6. The protruding rear part of the regulator appears to be situated distal to the sites occupied by the subunits alpha2 and alpha3, respectively. When viewed from beta1/beta1' to beta4/beta4' along the polar 2-fold axis of the 20S proteasome core, the rear part of each 19S regulator cap appears to protrude clockwise. Thus, a defined alignment of the 19S regulator with respect to the single polar 2-fold rotational axis of the 20S core proteasome is obtained.


Subject(s)
Cysteine Endopeptidases/ultrastructure , Multienzyme Complexes/ultrastructure , Proteins/ultrastructure , Antibodies, Monoclonal , Cysteine Endopeptidases/metabolism , Gene Expression Regulation, Enzymologic , Humans , Microscopy, Immunoelectron , Multienzyme Complexes/metabolism , Proteasome Endopeptidase Complex , Protein Conformation , Protein Subunits , Proteins/metabolism
3.
Int J Biochem Cell Biol ; 35(5): 740-8, 2003 May.
Article in English | MEDLINE | ID: mdl-12672465

ABSTRACT

Insulin-dependent diabetes mellitus is known to go along with enhanced muscle protein breakdown. Since evidence has been presented that the ubiquitin-proteasome system is significantly involved in muscle wasting under this condition, we have investigated, whether this biological role goes along with alterations of the proteasome system in skeletal muscle of streptozotocin-diabetic rats. Previously, we have found a drop of overall proteasome activity in muscle extracts of rats after induction of diabetes but no change in total amount of 20S proteasome was detected. In the present investigation under the same diabetic conditions we have measured a significant decrease in the amount of proteasome activator PA28, a finding that explains the loss of total proteasome activity. Since increased mRNA levels of proteasome subunits have been measured in muscle tissue of rats after induction of diabetes, we have isolated and purified 20S proteasomes from muscle tissue of control and 6 days diabetic rats. The specific chymotrypsin-like, trypsin-like, and peptidylglutamylpeptide-hydrolysing activities of proteasomes from diabetic and control rats were found to be not significantly different. Therefore, we have fractionated 20S proteasomes into their subtypes and detected that induction of diabetes mellitus effects a redistribution of subtypes of all three proteasome populations but only the increase in subtype V (immuno-subtype) was statistically significant. This altered subtype pattern obviously meets the requirements to the system under wasting conditions. Since this process goes along with de novo biogenesis of 20S proteasomes, it most likely explains the phenomenon of elevated mRNA concentrations of proteasome subunits after induction of diabetes mellitus.


Subject(s)
Cysteine Endopeptidases/metabolism , Diabetes Mellitus, Experimental/metabolism , Multienzyme Complexes/metabolism , Muscle, Skeletal/metabolism , Proteins/metabolism , Animals , Cell Cycle Proteins , Cysteine Endopeptidases/chemistry , Male , Multienzyme Complexes/chemistry , Proteasome Endopeptidase Complex , Proteins/chemistry , Rats , Rats, Wistar
4.
J Immunol Methods ; 260(1-2): 183-93, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11792388

ABSTRACT

Because quantification of the 20S proteasome by functional activity measurements is difficult and inaccurate, we have developed an indirect sandwich enzyme-linked immunosorbent assays (ELISA) for quantification of the 20S proteasome in human plasma. This sandwich ELISA uses a combination of a monoclonal antibody (mcp 20) recognizing the C2-beta subunit of human 20S proteasome (Mr approximately 30,000) and a polyclonal rabbit anti-20S antibody which labels different subunits of the complex. The detection limit of the assay was established as 10 ng/ml (n=10, mean of zero standard+2 S.D.) and the recovery rate ranged from 96% to 104%. The within-run and between-run coefficients of variation (CV) ranges were 2.8-3.3 and 3.0-3.4, respectively. Using serial dilutions of plasma to which various amounts of purified 20S proteasome were added, a linear dose-response was observed between 102 and 2050 ng/ml with a slope of 1.004 and a coefficient of determination r(2) of 0.99. In a preliminary experiment performed on a limited number of patients, the present assay was used to quantify the 20S proteasome in plasma from healthy subjects (n=11) and from a limited number of patients with various diseases (two patients with each of the following diagnoses: acute myeloid leukaemia, chronic myeloproliferative syndromes, Hodgkin's disease and solid tumors). The average concentration of 20S proteasome in plasma from normal subjects was found to be 2319+/-237 ng/ml (n=11). With reference to this normal range, the plasma proteasome concentration was found to be increased in most of these pathological state and as high as 1200% when solid tumors had been detected. For patients with Hodgkin's disease, the changes were more variable whereas in patients with chronic lymphocytic leukaemia, the proteasome concentration was raised during the acute phase of disease and decreased during therapy. We suggest that this robust, accurate and highly reproducible assay could be used to quantify proteasome in human plasma and investigate its value as a biological marker for various malignant and nonmalignant diseases.


Subject(s)
Cysteine Endopeptidases/blood , Enzyme-Linked Immunosorbent Assay/methods , Multienzyme Complexes/blood , Animals , Biomarkers , Cysteine Endopeptidases/immunology , Hodgkin Disease/blood , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Multienzyme Complexes/immunology , Proteasome Endopeptidase Complex , Rabbits , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...