Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Dent Mater ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38853104

ABSTRACT

INTRODUCTION: Peri-implantitis is an inflammatory process around dental implants that is characterised by bone loss that may jeopardize the long-term survival of osseo integrated dental implants. The aim of this study was to create a surface coating on titanium abutments that possesses cellular adhesion and anti-microbial properties as a post-implant placement strategy for patients at risk of peri-implantitis. MATERIALS AND METHODSMETHODS: Titanium alloy Grade V stubs were coated with gold particles and then subjected to ceramic conversion treatment (CCT) at 620 °C for 3, 8 and 80 h. The surface characteristics and chemistry were assessed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis. The leaching profile was investigated by inductively coupled plasma mass spectroscopy (ICP-MS) for all groups after 7, 14 and 28 days in contact with distilled water. A scratch test was conducted to assess the adhesion of the gold coating to the underlying titanium discs. Two bacterial species (Staphylococcus aureus (SA) & Fusobacterium nucleatum (FN)) were used to assess the antibacterial behaviour of the coated discs using a direct attachment assay test. The potential changes in surface chemistry by the bacterial species were investigated by grazing angle XRD. RESULTS: The gold pre-coated titanium discs exhibited good stability of the coating especially after immersion in distilled water and after bacterial colonisation as evident by XRD analysis. Good surface adhesion of the coating was demonstrated for gold treated discs after scratch test analysis, especially titanium, following a 3-hour (3 H) ceramic conversion treatment. All coated discs exhibited significantly improved antimicrobial properties against both tested bacterial species compared to untreated titanium discs. CONCLUSIONS: Ceramic conversion treated titanium with a pre-deposited gold layer showed improved antimicrobial properties against both SA and FN species than untreated Ti-C discs. Scratch test analysis showed good adherence properties of the coated discs the oxide layer formed is firmly adherent to the underlying titanium substrate, suggesting that this approach may have clinical efficacy for coating implant abutments.

2.
Dent Mater ; 40(3): 387-392, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103958

ABSTRACT

INTRODUCTION: Biological characterization of root canal sealers is important as it assesses the ability of the root canal sealer to exert antimicrobial properties thus avoiding treatment failures caused by microbial challenge and also assess the cytotoxic effect on the periapical tissues. Assessment of the biological testing of root canal sealers necessitates the sterilisation of the materials prior to evaluation. This study aims to analyse the influence of various sterilisation techniques conducted prior to biological testing on the microstructure and surface properties of endodontic sealers. Assessment of the initial microbial contamination on the material was also undertaken. METHODS: Four commercial sealers were investigated. The sealers were either prepared in a laminar flow cabinet or on a laboratory bench top under ambient conditions. Each group was further divided into 5 groups (n = 3) based on the sterilization technique:1) ethanol-10 mins, 2) ultraviolet-1 h, 3) ethanol-10 mins + ultraviolet-1 h, 4) autoclave, and 5) no sterilisation (control). Microbial levels in the materials were assessed by plate streaking technique. The materials were characterized by scanning electron microscopy and energy dispersive spectroscopy, and Fourier transform infrared spectroscopy, before and after sterilisation, to assess any changes in microstructure and chemical composition. RESULTS: All the materials did not exhibit contamination when prepared in laminar flow chamber in sterile conditions compared with sealers prepared on the bench top. Three of the commercial materials showed changes in microstructure while one (TotalFill) was not affected by the sterilisation. AH Plus and BioRoot RCS exhibited alterations in water and alcohol peaks in FT-IR while the single syringe sealers (TotalFill and BioRoot Flow) showed no changes. CONCLUSIONS: Sterilisation methods cause physical and chemical alterations to sealers. Material preparation should be performed in a laminar flow cabinet and a test for sterility should be performed prior to any biological testing being undertaken. If the materials are not sterile, assessment of the effects of the sterilization methods is recommended.


Subject(s)
Root Canal Filling Materials , Epoxy Resins/chemistry , Gutta-Percha/chemistry , Spectroscopy, Fourier Transform Infrared , Dental Pulp Cavity , Calcium Compounds/chemistry , Materials Testing , Ethanol , Silicates/chemistry
3.
Microorganisms ; 11(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37512861

ABSTRACT

Quorum sensing molecules (QSMs) in the oral cavity regulate biofilm formation, the acquisition of iron, stress responses, and the expression of virulence factors. However, knowledge of the direct QSM-host interactions in the oral environment is limited, although their understanding could provide greater insight into the cross-kingdom communication occurring during oral disease development. This review aims to explore the literature on oral QSM-host interactions and to highlight areas of advancement in this field. The studies included in this review encompass an array of cell types and oral QSMs, with particular emphasis on immune cells and their relationship to periodontal diseases. It can be inferred from the current literature that QSMs are utilised by host cells to detect bacterial presence and, in the majority of cases, elicit an immune response towards the environmental QSMs. This may provide a base to target QSMs as a novel treatment of oral diseases. However, N-acyl homoserine lactone (AHL) detection methods remain an area for development, through which a greater understanding of the influence of oral QSMs on host cells could be achieved.

4.
Microb Genom ; 9(6)2023 06.
Article in English | MEDLINE | ID: mdl-37272920

ABSTRACT

The gut microbiota is a reservoir for antimicrobial resistance genes (ARGs). With current sequencing methods, it is difficult to assign ARGs to their microbial hosts, particularly if these ARGs are located on plasmids. Metagenomic chromosome conformation capture approaches (meta3C and Hi-C) have recently been developed to link bacterial genes to phylogenetic markers, thus potentially allowing the assignment of ARGs to their hosts on a microbiome-wide scale. Here, we generated a meta3C dataset of a human stool sample and used previously published meta3C and Hi-C datasets to investigate bacterial hosts of ARGs in the human gut microbiome. Sequence reads mapping to repetitive elements were found to cause problematic noise in, and may importantly skew interpretation of, meta3C and Hi-C data. We provide a strategy to improve the signal-to-noise ratio by discarding reads that map to insertion sequence elements and to the end of contigs. We also show the importance of using spike-in controls to quantify whether the cross-linking step in meta3C and Hi-C protocols has been successful. After filtering to remove artefactual links, 87 ARGs were assigned to their bacterial hosts across all datasets, including 27 ARGs in the meta3C dataset we generated. We show that commensal gut bacteria are an important reservoir for ARGs, with genes coding for aminoglycoside and tetracycline resistance being widespread in anaerobic commensals of the human gut.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Phylogeny , Bacteria , Drug Resistance, Microbial/genetics , Chromosomes
5.
Biofilm ; 5: 100115, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37252225

ABSTRACT

Chronic wounds are a drain on global health services and remain a major area of unmet clinical need. Chronic wounds are characterised by a stable and stubborn bacterial biofilm which hinders innate immune response and delays or prevents wound healing. Bioactive glass (BG) fibres offer a promising novel treatment for chronic wounds by targeting the wound-associated biofilm. In this study, the antimicrobial properties of silver-doped BG fibres were tested against Pseudomonas aeruginosa biofilms, which are commonly found in chronic wound infections. Results showed that BG fibres doped with silver resulted in a 5log10 reduction in biofilm formation whereas silver-free fibres only reduced formation by log10, therefore silver-doped fibres possess stronger antimicrobial effects. Moreover, there appeared to be a synergistic effect between the fibres and the silver as the application of the silver-doped fibres placed directly in contact with the forming biofilm resulted in a higher reduction in biofilm formation compared to treatments either: using the dissolution ions, using BG powder, or when the fibres were placed in an insert above the biofilm, inhibiting physical contact, instead. This suggests that the physical properties of the fibres, as well as silver, influence biofilm formation. Finally, results demonstrated that silver chloride, which is not antimicrobial, forms and the concentrations of antimicrobial silver species, namely silver ions and nanoparticles, reduce over time when fibres are soaked in cell culture media, which partially explains why the silver-doped dissolution ions contained lower antimicrobial activity compared to the fibres. As silver chloride is more likely to form with increased temperature and time, the antimicrobial activity of silver-containing dissolution ions is highly dependent on the length of ageing and storage conditions. Many studies investigate the antimicrobial and cytotoxic properties of biomaterials through their dissolution products. However, instability of antimicrobial silver species due to silver chloride formation and its effect on antimicrobial properties of silver-based biomaterials has not been reported before and could influence past and future dissolution-based assays as results showed that the antimicrobial activity of silver-based dissolution ions can vary greatly depending on post processing steps and can therefore produce misleading data.

6.
Open Forum Infect Dis ; 10(3): ofad040, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36895287

ABSTRACT

Background: Clostridioides difficile is the leading cause of hospital-acquired gastrointestinal infection, in part due to the existence of binary toxin (CDT)-expressing hypervirulent strains. Although the effects of the CDT holotoxin on disease pathogenesis have been previously studied, we sought to investigate the role of the individual components of CDT during in vivo infection. Methods: To determine the contribution of the separate components of CDT during infection, we developed strains of C difficile expressing either CDTa or CDTb individually. We then infected both mice and hamsters with these novel mutant strains and monitored them for development of severe illness. Results: Although expression of CDTb without CDTa did not induce significant disease in a mouse model of C difficile infection, we found that complementation of a CDT-deficient C difficile strain with CDTb alone restored virulence in a hamster model of C difficile infection. Conclusions: Overall, this study demonstrates that the binding component of C difficile binary toxin, CDTb, contributes to virulence in a hamster model of infection.

8.
Front Oral Health ; 3: 853618, 2022.
Article in English | MEDLINE | ID: mdl-35368312

ABSTRACT

Development of dysbiosis in complex multispecies bacterial biofilms forming on teeth, known as dental plaque, is one of the factors causing periodontitis. Fusobacterium nucleatum (F. nucleatum) is recognised as a key microorganism in subgingival dental plaque, and is linked to periodontitis as well as colorectal cancer and systemic diseases. Five subspecies of F. nucleatum have been identified: animalis, fusiforme, nucleatum, polymorphum, and vincentii. Differential integration of subspecies into multispecies biofilm models has been reported, however, biofilm forming ability of individual F. nucleatum subspecies is largely unknown. The aim of this study was to determine the single-subspecies biofilm forming abilities of F. nucleatum ATCC type strains. Static single subspecies F. nucleatum biofilms were grown anaerobically for 3 days on untreated or surface-modified (sandblasting, artificial saliva, fibronectin, gelatin, or poly-L-lysine coating) plastic and glass coverslips. Biofilm mass was quantified using crystal violet (CV) staining. Biofilm architecture and thickness were analysed by scanning electron microscopy and confocal laser scanning microscopy. Bioinformatic analysis was performed to identify orthologues of known adhesion proteins in F. nucleatum subspecies. Surface type and treatment significantly influenced single-subspecies biofilm formation. Biofilm formation was overall highest on poly-L-lysine coated surfaces and sandblasted glass surfaces. Biofilm thickness and stability, as well as architecture, varied amongst the subspecies. Interestingly, F. nucleatum ssp. polymorphum did not form a detectable, continuous layer of biofilm on any of the tested substrates. Consistent with limited biofilm forming ability in vitro, F. nucleatum ssp. polymorphum showed the least conservation of the adhesion proteins CmpA and Fap2 in silico. Here, we show that biofilm formation by F. nucleatum in vitro is subspecies- and substrate-specific. Additionally, F. nucleatum ssp. polymorphum does not appear to form stable single-subspecies continuous layers of biofilm in vitro. Understanding the differences in F. nucleatum single-subspecies biofilm formation may shed light on multi-species biofilm formation mechanisms and may reveal new virulence factors as novel therapeutic targets for prevention and treatment of F. nucleatum-mediated infections and diseases.

9.
PLoS Pathog ; 18(2): e1010323, 2022 02.
Article in English | MEDLINE | ID: mdl-35176123

ABSTRACT

Clostridioides difficile infection (CDI) is the leading cause of nosocomial diarrhea and pseudomembranous colitis in the USA. In addition to these symptoms, patients with CDI can develop severe inflammation and tissue damage, resulting in life-threatening toxic megacolon. CDI is mediated by two large homologous protein toxins, TcdA and TcdB, that bind and hijack receptors to enter host cells where they use glucosyltransferase (GT) enzymes to inactivate Rho family GTPases. GT-dependent intoxication elicits cytopathic changes, cytokine production, and apoptosis. At higher concentrations TcdB induces GT-independent necrosis in cells and tissue by stimulating production of reactive oxygen species via recruitment of the NADPH oxidase complex. Although GT-independent necrosis has been observed in vitro, the relevance of this mechanism during CDI has remained an outstanding question in the field. In this study we generated novel C. difficile toxin mutants in the hypervirulent BI/NAP1/PCR-ribotype 027 R20291 strain to test the hypothesis that GT-independent epithelial damage occurs during CDI. Using the mouse model of CDI, we observed that epithelial damage occurs through a GT-independent process that does not involve immune cell influx. The GT-activity of either toxin was sufficient to cause severe edema and inflammation, yet GT activity of both toxins was necessary to produce severe watery diarrhea. These results demonstrate that both TcdA and TcdB contribute to disease pathogenesis when present. Further, while inactivating GT activity of C. difficile toxins may suppress diarrhea and deleterious GT-dependent immune responses, the potential of severe GT-independent epithelial damage merits consideration when developing toxin-based therapeutics against CDI.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Animals , Antibodies, Bacterial , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Clostridium Infections/pathology , Diarrhea , Enterotoxins/metabolism , Enterotoxins/toxicity , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Humans , Inflammation , Mice , Necrosis
10.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830145

ABSTRACT

Hydrogels constructed from naturally derived polymers provide an aqueous environment that encourages cell growth, however, mechanical properties are poor and degradation can be difficult to predict. Whilst, synthetic hydrogels exhibit some improved mechanical properties, these materials lack biochemical cues for cells growing and have limited biodegradation. To produce hydrogels that support 3D cell cultures to form tissue mimics, materials must exhibit appropriate biological and mechanical properties. In this study, novel organic-inorganic hybrid hydrogels based on chitosan and silica were prepared using the sol-gel technique. The chemical, physical and biological properties of the hydrogels were assessed. Statistical analysis was performed using One-Way ANOVAs and independent-sample t-tests. Fourier transform infrared spectroscopy showed characteristic absorption bands including amide II, Si-O and Si-O-Si confirming formation of hybrid networks. Oscillatory rheometry was used to characterise the sol to gel transition and viscoelastic behaviour of hydrogels. Furthermore, in vitro degradation revealed both chitosan and silica were released over 21 days. The hydrogels exhibited high loading efficiency as total protein loading was released in a week. There were significant differences between TC2G and C2G at all-time points (p < 0.05). The viability of osteoblasts seeded on, and encapsulated within, the hydrogels was >70% over 168 h culture and antimicrobial activity was demonstrated against Pseudomonas aeruginosa and Enterococcus faecalis. The hydrogels developed here offer alternatives for biopolymer hydrogels for biomedical use, including for application in drug/cell delivery and for bone tissue engineering.


Subject(s)
Cell Encapsulation/methods , Chitosan/chemistry , Drug Delivery Systems/methods , Hydrogels/chemistry , Silicon Dioxide/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Cell Line, Tumor , Cell Survival/drug effects , Enterococcus faecalis/drug effects , Humans , Hydrogels/pharmacology , Microscopy, Electron, Scanning , Phase Transition , Proton Magnetic Resonance Spectroscopy , Pseudomonas aeruginosa/drug effects , Spectroscopy, Fourier Transform Infrared , Tissue Engineering/methods
11.
Materials (Basel) ; 14(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34772075

ABSTRACT

Titanium oxide layers were produced via a novel catalytic ceramic conversion treatment (CCCT, C3T) on Ti-6Al-4V. This CCCT process is carried out by applying thin catalytic films of silver and palladium onto the substrate before an already established traditional ceramic conversion treatment (CCT, C2T) is carried out. The layers were characterised using scanning electron microscopy, X-ray diffraction, transmission electron microscopy; surface micro-hardness and reciprocating tribological performance was assessed; antibacterial performance was also assessed with S. aureus. This CCCT has been shown to increase the oxide thickness from ~5 to ~100 µm, with the production of an aluminium rich layer and agglomerates of silver and palladium oxide surrounded by vanadium oxide at the surface. The wear factor was significantly reduced from ~393 to ~5 m3/N·m, and a significant reduction in the number of colony-forming units per ml of Staphylococcus aureus on the CCCT surfaces was observed. The potential of the novel C3T treatment has been demonstrated by comparing the performance of C3T treated and untreated Ti6Al4V fixation pins through inserting into simulated bone materials.

12.
Anaerobe ; 71: 102422, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34343672

ABSTRACT

Clostridioides difficile R20291 is the most studied PCR-Ribotype 027 isolate. The two predominant lineages of this hypervirulent strain, however, exhibit substantive phenotypic differences and possess genomes that differ by a small number of nucleotide changes. It is important that the source of R20291 is taken into account in research outcomes.


Subject(s)
Clostridioides/genetics , Clostridium Infections/microbiology , Polymorphism, Single Nucleotide , Clostridioides/classification , Clostridioides/isolation & purification , Clostridioides difficile/classification , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Genome, Bacterial , Humans , Phylogeny
13.
Acta Biomater ; 134: 760-773, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34329788

ABSTRACT

The rise of antimicrobial resistant bacteria coupled with a void in antibiotic development marks Antimicrobial Resistance as one of the biggest current threats to modern medicine. Antimicrobial metals are being developed and used as alternative anti-infectives, however, the existence of known resistance mechanisms and limited data regarding bacterial responses to long-term metal exposure are barriers to widespread implementation. In this study, a panel of reference and clinical strains of major nosocomial pathogens were subjected to serial dosage cycles of silver and ciprofloxacin. Populations exposed to silver initially showed no change in sensitivity, however, increasingly susceptibility was observed after the 25th cycle. A control experiment with ciprofloxacin revealed a selection for resistance over time, with silver treated bacteria showing faster adaptation. Morphological analysis revealed filamentation in Gram negative species suggesting membrane perturbation, while sequencing of isolated strains identified mutations in numerous genes. These included those encoding for efflux systems, chemosensory systems, stress responses, biofilm formation and respiratory chain processes, although no consistent locus was identified that correlated with silver sensitivity. These results suggest that de novo silver resistance is hard to select in a range of nosocomial pathogens, although silver exposure may detrimentally impact sensitivity to antibiotics in the long term. STATEMENT OF SIGNIFICANCE: The adaptability of microbial life continuously calls for the development of novel antibiotic molecules, however, the cost and risk associated with their discovery have led to a drying up in the pipeline, causing antimicrobial resistance (AMR) to be a major threat to healthcare. From all available strategies, antimicrobial metals and, more specifically, silver showcase large bactericidal spectrum and limited toxic effect which coupled with a large range of processes available for their delivery made these materials as a clear candidate to tackle AMR. Previous reports have shown the ability of this metal to enact a synergistic effect with other antimicrobial therapies, nevertheless, the discovery of Ag resistance mechanisms since the early 70s and limited knowledge on the long term influence of silver on AMR poses a threat to their applicability. The present study provides quantitative data on the influence of silver based therapies on AMR development for a panel of reference and clinical strains of major nosocomial pathogens, revealing that prolonged silver exposure may detrimentally impact sensitivity to antibiotics.


Subject(s)
Ciprofloxacin , Cross Infection , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Cross Infection/drug therapy , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Silver/pharmacology
14.
Photochem Photobiol Sci ; 20(5): 699-714, 2021 May.
Article in English | MEDLINE | ID: mdl-33945145

ABSTRACT

Mesenchymal stem cells (MSCs) and photobiomodulation (PBM) both offer significant therapeutic potential in regenerative medicine. MSCs have the ability to self-renew and differentiate; giving rise to multiple cellular and tissue lineages that are utilised in repair and regeneration of damaged tissues. PBM utilises light energy delivered at a range of wavelengths to promote wound healing. The positive effects of light on MSC proliferation are well documented; and recently, several studies have determined the outcomes of PBM on mineralised tissue differentiation in MSC populations. As PBM effects are biphasic, it is important to understand the underlying cellular regulatory mechanisms, as well as, provide accurate details of the irradiation conditions, to optimise and standardise outcomes. This review article focuses on the use of red, near-infra-red (R/NIR) and blue wavelengths to promote the mineralisation potential of MSCs; and also reports on the possible molecular mechanisms which underpin transduction of these effects. A variety of potential photon absorbers have been identified which are reported to mediate the signalling mechanisms, including respiratory chain enzymes, flavins, and cryptochromes. Studies report that R/NIR and blue light stimulate MSC differentiation by enhancing respiratory chain activity and increasing reactive oxygen species levels; however, currently, there are considerable variations between irradiation parameters reported. We conclude that due to its non-invasive properties, PBM may, following optimisation, provide an efficient therapeutic approach to clinically support MSC-mediated hard tissue repair. However, to optimise application, further studies are required to identify appropriate light delivery parameters, as well as elucidate the photo-signalling mechanisms involved.


Subject(s)
Low-Level Light Therapy , Mesenchymal Stem Cells/metabolism , Humans , Infrared Rays , Mesenchymal Stem Cells/pathology
15.
NPJ Biofilms Microbiomes ; 7(1): 44, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990612

ABSTRACT

Quantifying biofilm formation on surfaces is challenging because traditional microbiological methods, such as total colony-forming units (CFUs), often rely on manual counting. These are laborious, resource intensive techniques, more susceptible to human error. Confocal laser scanning microscopy (CLSM) is a high-resolution technique that allows 3D visualisation of biofilm architecture. In combination with a live/dead stain, it can be used to quantify biofilm viability on both transparent and opaque surfaces. However, there is little consensus on the appropriate methodology to apply in confocal micrograph processing. In this study, we report the development of an image analysis approach to repeatably quantify biofilm viability and surface coverage. We also demonstrate its use for a range of bacterial species and translational applications. This protocol has been created with ease of use and accessibility in mind, to enable researchers who do not specialise in computational techniques to be confident in applying these methods to analyse biofilm micrographs. Furthermore, the simplicity of the method enables the user to adapt it for their bespoke needs. Validation experiments demonstrate the automated analysis is robust and accurate across a range of bacterial species and an improvement on traditional microbiological analysis. Furthermore, application to translational case studies show the automated method is a reliable measurement of biomass and cell viability. This approach will ensure image analysis is an accessible option for those in the microbiology and biomaterials field, improve current detection approaches and ultimately support the development of novel strategies for preventing biofilm formation by ensuring comparability across studies.


Subject(s)
Biofilms , Image Processing, Computer-Assisted/methods , Microscopy, Confocal , Phenotype , Software , Bacteria/growth & development , Bacterial Physiological Phenomena , Biofilms/growth & development , Humans , Microscopy, Confocal/methods , ROC Curve
16.
Sci Rep ; 11(1): 4491, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627825

ABSTRACT

Prophylactic antibiotic bone cements are extensively used in orthopaedics. However, the development of antimicrobial resistance to antibiotics, demonstrates a need to find alternative treatments. Herein, an antimicrobial honey (SurgihoneyRO-SHRO) has been successfully incorporated into a calcium sulphate (CS) based cement to produce a hard tissue scaffold with the ability to inhibit bacterial growth. Antimicrobial properties elicited from SHRO are predominantly owed to the water-initiated production of reactive oxygen species (ROS). As an alternative to initially loading CS cement with SHRO, in order to prevent premature activation, SHRO was added into the already developing cement matrix, locking available water into the CS crystal structure before SHRO addition. Promisingly, this methodology produced > 2.5 times (715.0 ± 147.3 µM/mL/g) more ROS over 24 h and exhibited a compressive strength (32.2 ± 5.8 MPa) comparable to trabecular bone after 3 weeks of immersion. In-vitro the SHRO loaded CS scaffolds were shown to inhibit growth of clinically relevant organisms, Staphylococcus aureus and Pseudomonas aeruginosa, with comparable potency to equivalent doses of gentamicin. Encouragingly, formulations did not inhibit wound healing or induce an inflammatory response from osteoblasts. Overall this study highlights the prophylactic potential of CS-SHRO cements as an alternative to traditional antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bone Cements/pharmacology , Calcium Sulfate/pharmacology , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Tissue Scaffolds/chemistry , Bacteria/drug effects , Biofilms/drug effects , Cells, Cultured , Compressive Strength/drug effects , Humans , Inflammation/drug therapy , Microbial Sensitivity Tests/methods , Osteoblasts/drug effects , Osteoblasts/metabolism
17.
Nat Commun ; 12(1): 1140, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602902

ABSTRACT

Clostridioides difficile spores produced during infection are important for the recurrence of the disease. Here, we show that C. difficile spores gain entry into the intestinal mucosa via pathways dependent on host fibronectin-α5ß1 and vitronectin-αvß1. The exosporium protein BclA3, on the spore surface, is required for both entry pathways. Deletion of the bclA3 gene in C. difficile, or pharmacological inhibition of endocytosis using nystatin, leads to reduced entry into the intestinal mucosa and reduced recurrence of the disease in a mouse model. Our findings indicate that C. difficile spore entry into the intestinal barrier can contribute to spore persistence and infection recurrence, and suggest potential avenues for new therapies.


Subject(s)
Clostridioides difficile/physiology , Clostridium Infections/microbiology , Epithelial Cells/microbiology , Epithelial Cells/pathology , Intestines/microbiology , Intestines/pathology , Spores, Bacterial/physiology , Animals , Bacterial Adhesion/drug effects , Bacterial Proteins/metabolism , Cell Line , Clostridioides difficile/drug effects , Clostridioides difficile/ultrastructure , Collagen/metabolism , Endocytosis , Epithelial Cells/ultrastructure , Female , Fibronectins/metabolism , Humans , Integrins/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice, Inbred C57BL , Nystatin/pharmacology , Protein Binding/drug effects , Recurrence , Spores, Bacterial/drug effects , Spores, Bacterial/ultrastructure , Taurocholic Acid/pharmacology , Vitronectin/metabolism
18.
J Photochem Photobiol B ; 215: 112123, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33454542

ABSTRACT

The direct application of light for photo-disinfection potentially provides a safe and novel modality to inhibit or eliminate cariogenic bacteria residing upon and within dentine. This study aimed to both; characterize the pattern of transmission of 405 nm light through molar dentine at different tooth locations, as well as, determine the irradiation parameters that are antibacterial for Streptococcus mutans under various growth conditions, including lawns, planktonic cultures, and biofilms. To determine the amount of light (405 nm) transmitted at different anatomical tooth locations; irradiance values were recorded after blue light (470-4054 mW/cm2) had traversed through occlusal, oblique, and buccal dentine sections; and three thicknesses - 1, 2 and 3 mm were investigated. To determine tubular density; scanning electron micrographs from 2 mm outer (dentine-enamel junction) and inner (pulp) dentine sections were analysed. For photo-disinfection studies; S. mutans was irradiated using the same 405 nm wavelength light at a range of doses (110-1254 J/cm2) in both biofilm and planktonic cultures. The inhibitory effect of the irradiation on bacterial lawns was compared by measuring zones of inhibition; and for planktonic cultures both spectrophotometric and colony forming unit (CFU) assays were performed. A live/dead staining assay was utilised to determine the effect of irradiation on bacterial viability in mature biofilms. Data indicated that increasing dentine thickness decreased light transmission significantly irrespective of its orientation. Occlusal and oblique samples exhibited higher transmission compared with buccal dentine. Oblique dentine 405 nm light transmission was comparable with that of occlusal dentine independent of section thickness. An increased tubule density directly positively correlated with light transmission. Irradiation at 405 nm inhibited S. mutans growth in both biofilm and planktonic cultures and a dose response relationship was observed. Irradiation at doses of 340 and 831 J/cm2 led to significant reductions in bacterial growth and viability; as determined by CFU counting and live/dead staining. Data suggests that phototherapy approaches utilising a 405 nm wavelength have therapeutic potential to limit cariogenic bacterial infections both at the surface and within dentine.


Subject(s)
Dentin/radiation effects , Disinfection/methods , Light , Adult , Color , Dentin/microbiology , Female , Humans , Male , Microbial Viability/radiation effects , Streptococcus mutans/physiology , Streptococcus mutans/radiation effects , Young Adult
19.
J Oral Microbiol ; 12(1): 1773122, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32922679

ABSTRACT

Co-cultures allow for the study of cell-cell interactions between different eukaryotic species or with bacteria. Such an approach has enabled researchers to more closely mimic complex tissue structures. This review is focused on co-culture systems modelling the oral cavity, which have been used to evaluate this unique cellular environment and understand disease progression. Over time, these systems have developed significantly from simple 2D eukaryotic cultures and planktonic bacteria to more complex 3D tissue engineered structures and biofilms. Careful selection and design of the co-culture along with critical parameters, such as seeding density and choice of analysis method, have resulted in several advances. This review provides a comparison of existing co-culture systems for the oral environment, with emphasis on progression of 3D models and the opportunity to harness techniques from other fields to improve current methods. While filling a gap in navigating this literature, this review ultimately supports the development of this vital technique in the field of oral biology.

20.
PLoS Pathog ; 16(9): e1008852, 2020 09.
Article in English | MEDLINE | ID: mdl-32960931

ABSTRACT

Enzymatic inactivation of Rho-family GTPases by the glucosyltransferase domain of Clostridioides difficile Toxin B (TcdB) gives rise to various pathogenic effects in cells that are classically thought to be responsible for the disease symptoms associated with C. difficile infection (CDI). Recent in vitro studies have shown that TcdB can, under certain circumstances, induce cellular toxicities that are independent of glucosyltransferase (GT) activity, calling into question the precise role of GT activity. Here, to establish the importance of GT activity in CDI disease pathogenesis, we generated the first described mutant strain of C. difficile producing glucosyltransferase-defective (GT-defective) toxin. Using allelic exchange (AE) technology, we first deleted tcdA in C. difficile 630Δerm and subsequently introduced a deactivating D270N substitution in the GT domain of TcdB. To examine the role of GT activity in vivo, we tested each strain in two different animal models of CDI pathogenesis. In the non-lethal murine model of infection, the GT-defective mutant induced minimal pathology in host tissues as compared to the profound caecal inflammation seen in the wild-type and 630ΔermΔtcdA (ΔtcdA) strains. In the more sensitive hamster model of CDI, whereas hamsters in the wild-type or ΔtcdA groups succumbed to fulminant infection within 4 days, all hamsters infected with the GT-defective mutant survived the 10-day infection period without primary symptoms of CDI or evidence of caecal inflammation. These data demonstrate that GT activity is indispensable for disease pathogenesis and reaffirm its central role in disease and its importance as a therapeutic target for small-molecule inhibition.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Clostridioides difficile , Enterocolitis, Pseudomembranous , Glucosyltransferases , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Clostridioides difficile/pathogenicity , Cricetinae , Disease Models, Animal , Enterocolitis, Pseudomembranous/enzymology , Enterocolitis, Pseudomembranous/genetics , Enterocolitis, Pseudomembranous/pathology , Female , Gene Deletion , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...