Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dent Mater ; 40(6): 976-983, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729778

ABSTRACT

OBJECTIVES: This study demonstrates the use of photopolymerization to create semi-crystalline linear polymers suitable for thermally reversible materials in dental cast moldings produced from 3D printing. METHODS: An aromatic diallyl, aliphatic dithiol chain extender, and monofunctional thiol were used in a photoinitiated system. The photopolymerization and crystallization kinetics as a function of chemistry and temperature were investigated using spectroscopy and calorimetry. These insights were used to realize vat photopolymerization-based 3D printing of functional objects that could be remotely melted and thereby removed using induction heating. RESULTS: The addition of monothiol was shown to decrease the polymer molecular weight which correspondingly increased the crystallization rate. Photopolymerization kinetics are independent of temperature while crystallization was slowed as the temperature approaches the melting point of the materials. Through inclusion of chromium oxide, semicrystalline materials could be melted through induction heating. These materials were implemented in vat photopolymerization 3D printing to realize high-resolution objects that could be used as releasable dental molds following printing and induction heating. SIGNIFICANCE: This work demonstrates a proof-of-concept methodology to realize directly printable, thermally reversible semicrystalline materials for potential use as dental molding materials.


Subject(s)
Polymerization , Polymers , Printing, Three-Dimensional , Polymers/chemistry , Crystallization , Photochemical Processes , Calorimetry , Dental Materials/chemistry , Dental Casting Investment/chemistry , Temperature , Materials Testing
2.
ACS Appl Mater Interfaces ; 15(8): 11111-11121, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36795439

ABSTRACT

To advance the capabilities of additive manufacturing, novel resin formulations are needed that produce high-fidelity parts with desired mechanical properties that are also amenable to recycling. In this work, a thiol-ene-based system incorporating semicrystallinity and dynamic thioester bonds within polymer networks is presented. It is shown that these materials have ultimate toughness values >16 MJ cm-3, comparable to high-performance literature precedents. Significantly, the treatment of these networks with excess thiols facilitates thiol-thioester exchange that degrades polymerized networks into functional oligomers. These oligomers are shown to be amenable to repolymerization into constructs with varying thermomechanical properties, including elastomeric networks that recover their shape fully from >100% strain. Using a commercial stereolithographic printer, these resin formulations are printed into functional objects including both stiff (E ∼ 10-100 MPa) and soft (E ∼ 1-10 MPa) lattice structures. Finally, it is shown that the incorporation of both dynamic chemistry and crystallinity further enables advancement in the properties and characteristics of printed parts, including attributes such as self-healing and shape-memory.

3.
ACS Macro Lett ; 12(2): 133-139, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36634287

ABSTRACT

The effect of catalysts with varying nucleophilic strength on thiol-thioester bond exchange dynamics and concomitant crystallization was studied in a model semicrystalline polymer network. It was found that the characteristic time scale of covalent bond exchange, τ, could be tuned over a ∼101-103 s range simply by changing the nucleophilicity of the catalyst. Using isothermal crystallization measurements via differential scanning calorimetry, thermodynamic and kinetic features of crystallization were considered. A depression in melting temperature was observed with increasing bond exchange rate, suggesting a dependence of crystalline organization on network dynamics. Furthermore, a systematic slowing of crystallization kinetics with faster covalent bond exchange rates was observed. Lauritzen-Hoffman analysis showed a near doubling in the barrier for secondary nucleation for dynamic networks, suggesting that that bond exchange slows crystallization by limiting secondary nucleation and further growth. Finally, longitudinal DSC studies reveal a long-term increase in melting temperature for samples held at ambient temperature with bond exchange activated at room temperature, indicating that while bond exchange slows crystallization on short time scales it facilitates isothermal long-term crystal rearrangement and growth on longer time scales.

4.
Angew Chem Int Ed Engl ; 62(1): e202214339, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36315038

ABSTRACT

Aligned liquid crystal polymers are materials of interest for electronic, optic, biological and soft robotic applications. The manufacturing and processing of these materials have been widely explored with mechanical alignment establishing itself as a preferred method due to its ease of use and widespread applicability. However, the fundamental chemistry behind the required two-step polymerization for mechanical alignment has limitations in both fabrication and substrate compatibility. In this work we introduce a new protection-deprotection approach utilizing a two-stage Diels-Alder cyclopentadiene-maleimide step-growth polymerization to enable mild yet efficient, fast, controlled, reproducible and user-friendly polymerizations, broadening the scope of liquid crystal systems. Thorough characterization of the films by DSC, DMA, POM and WAXD show the successful synthesis of a uniaxially aligned liquid crystal network with thermomechanical actuation abilities.

5.
Soft Matter ; 18(21): 4077-4089, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35603603

ABSTRACT

Formation of desired three-dimensional (3D) shapes from flat thin sheets with programmed non-uniform deformation profiles is an effective strategy to create functional 3D structures. Liquid crystal elastomers (LCEs) are of particular use in programmable shape morphing due to their ability to undergo large, reversible, and anisotropic deformation in response to a stimulus. Here we consider a rectangular monodomain LCE thin sheet divided into one high- and one low-temperature strip, which we dub a 'bistrip'. Upon activation, a discontinuously patterned, anisotropic in-plane stretch profile is generated, and induces buckling of the bistrip into a rolled shape with a transitional bottle neck. Based on the non-Euclidean plate theory, we derive an analytical model to quantitatively capture the formation of the rolled shapes from a flat bistrip with finite thickness by minimizing the total elastic energy involving both stretching and bending energies. Using this analytical model, we identify the critical thickness at which the transition from the unbuckled to buckled configuration occurs. We further study the influence of the anisotropy of the stretch profile on the rolled shapes by first converting prescribed metric tensors with different anisotropy to a unified metric tensor embedded in a bistrip of modified geometry, and then investigating the effect of each parameter in this unified metric tensor on the rolled shapes. Our analysis sheds light on designing shape morphing of LCE thin sheets, and provides quantitative predictions on the 3D shapes that programmed LCE sheets can form upon activation for various applications.

6.
ACS Macro Lett ; 9(8): 1172-1177, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32864191

ABSTRACT

Photoinduced shape morphing has implications in fields ranging from soft robotics to biomedical devices. Despite considerable effort in this area, it remains a challenge to design materials that can be both rapidly deployed and reconfigured into multiple different three-dimensional forms, particularly in aqueous environments. In this work, we present a simple method to program and rewrite spatial variations in swelling and, therefore, Gaussian curvature in thin sheets of hydrogels using photoswitchable supramolecular complexation of azobenzene pendent groups with dissolved α-cyclodextrin. We show that the extent of swelling can be programmed via the proportion of azobenzene isomers, with a 60% decrease in areal swelling from the all trans to the predominantly cis state near room temperature. The use of thin gel sheets provides fast response times in the range of a few tens of seconds, while the shape change is persistent in the absence of light thanks to the slow rate of thermal cis-trans isomerization. Finally, we demonstrate that a single gel sheet can be programmed with a first swelling pattern via spatially defined illumination with ultraviolet light, then erased with white light, and finally redeployed with a different swelling pattern.

7.
Proc Natl Acad Sci U S A ; 117(18): 9762-9770, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32300009

ABSTRACT

Actuation remains a significant challenge in soft robotics. Actuation by light has important advantages: Objects can be actuated from a distance, distinct frequencies can be used to actuate and control distinct modes with minimal interference, and significant power can be transmitted over long distances through corrosion-free, lightweight fiber optic cables. Photochemical processes that directly convert photons to configurational changes are particularly attractive for actuation. Various works have reported light-induced actuation with liquid crystal elastomers combined with azobenzene photochromes. We present a simple modeling framework and a series of examples that study actuation by light. Of particular interest is the generation of cyclic or periodic motion under steady illumination. We show that this emerges as a result of a coupling between light absorption and deformation. As the structure absorbs light and deforms, the conditions of illumination change, and this, in turn, changes the nature of further deformation. This coupling can be exploited in either closed structures or with structural instabilities to generate cyclic motion.

8.
Adv Mater ; 32(17): e2000609, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32173919

ABSTRACT

Liquid crystal elastomers (LCEs) are an attractive platform for dynamic shape-morphing due to their ability to rapidly undergo large deformations. While recent work has focused on patterning the director orientation field to achieve desired target shapes, this strategy cannot be generalized to material systems where high-resolution surface alignment is impractical. Instead of programming the local orientation of anisotropic deformation, an alternative strategy for prescribed shape-morphing by programming the magnitude of stretch ratio in a thin LCE sheet with constant director orientation is developed here. By spatially patterning the concentration of gold nanoparticles, uniform illumination leads to gradients in photothermal heat generation and therefore spatially nonuniform deformation profiles that drive out-of-plane buckling of planar films into predictable 3D shapes. Experimentally realized shapes are shown to agree closely with both finite element simulations and geometric predictions for systems with unidirectional variation in deformation magnitude. Finally, the possibility to achieve complex oscillatory motion driven by uniform illumination of a free-standing patterned sheet is demonstrated.

9.
ACS Macro Lett ; 9(6): 902-909, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-35648524

ABSTRACT

Photoisomerization of azobenzene in polymer matrices is a powerful method to convert photon energy into mechanical work. While most previous studies have focused on incorporating azobenzene within amorphous or liquid crystalline materials, the limited extents of molecular ordering and correspondingly modest enthalpy changes upon switching in such systems has limited the achievable energy densities. In this work, we introduce a semicrystalline main-chain poly(azobenzene), where photoisomerization is capable of reversibly triggering melting and recrystallization under essentially isothermal conditions. These materials can be drawn into aligned fibers, yielding optically driven two-way shape memory actuators capable of reversible bending.

10.
Adv Mater ; 31(27): e1900932, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31081182

ABSTRACT

Patterning of nanoparticles (NPs) via photochemical reduction within thermally responsive hydrogel films is demonstrated as a versatile platform for programming light-driven shape morphing and materials assembly. Responsive hydrogel disks, containing patterned metal NPs, form characteristic wrinkled structures when illuminated at an air/water interface. The resulting distortion of the three-phase (air/water/hydrogel) contact lines induces capillary interactions between two or more disks, which are either attractive or repulsive depending on the selected pattern of light. By programming the shapes of the NP-rich regions, as well as of the hydrogel objects themselves, the number and location of attractive interactions are specified, and the assembly geometry is controlled. Remarkably, appropriately patterned illumination enables sustained rotation and motion of the hydrogel disks. Overall, these results offer insight into a wide variety of shape-programmable materials and capillary assemblies, simply by controlling the NP patterns and illumination of these soft materials.

11.
Adv Mater ; 31(24): e1901216, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31012181

ABSTRACT

While most photomechanical materials developed to date have relied on free-space illumination to drive actuation, this strategy fails when direct line-of-site access is precluded. In this study, waveguided light is harnessed by liquid crystal elastomer (LCE) nanocomposites to drive actuation. Using photo-chemical reduction of gold salts to plasmonic nanoparticles, prescription of photoresponsive regions within fibers of mono-domain LCEs is demonstrated with control over both the location along the fiber axis, as well as in the azimuthal direction. Due to localized photothermal heating provided by plasmonic absorption of waveguided light and resulting inhomogeneous thermally induced deformation of the LCE, reversible bending along multiple axes is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...