Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 84(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29728377

ABSTRACT

The import of nonnatural molecules is a recurring problem in fundamental and applied aspects of microbiology. The dipeptide permease (Dpp) of Escherichia coli is an ABC-type multicomponent transporter system located in the cytoplasmic membrane, which is capable of transporting a wide range of di- and tripeptides with structurally and chemically diverse amino acid side chains into the cell. Given this low degree of specificity, Dpp was previously used as an entry gate to deliver natural and nonnatural cargo molecules into the cell by attaching them to amino acid side chains of peptides, in particular, the γ-carboxyl group of glutamate residues. However, the binding affinity of the substrate-binding protein dipeptide permease A (DppA), which is responsible for the initial binding of peptides in the periplasmic space, is significantly higher for peptides consisting of standard amino acids than for peptides containing side-chain modifications. Here, we used adaptive laboratory evolution to identify strains that utilize dipeptides containing γ-substituted glutamate residues more efficiently and linked this phenotype to different mutations in DppA. In vitro characterization of these mutants by thermal denaturation midpoint shift assays and isothermal titration calorimetry revealed significantly higher binding affinities of these variants toward peptides containing γ-glutamyl amides, presumably resulting in improved uptake and therefore faster growth in media supplemented with these nonstandard peptides.IMPORTANCE Fundamental and synthetic biology frequently suffer from insufficient delivery of unnatural building blocks or substrates for metabolic pathways into bacterial cells. The use of peptide-based transport vectors represents an established strategy to enable the uptake of such molecules as a cargo. We expand the scope of peptide-based uptake and characterize in detail the obtained DppA mutant variants. Furthermore, we highlight the potential of adaptive laboratory evolution to identify beneficial insertion mutations that are unlikely to be identified with existing directed evolution strategies.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/growth & development , Escherichia coli/genetics , Mutation , Peptides/metabolism , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/metabolism , Amides/metabolism , Bacterial Proteins/genetics , Biological Transport , Dipeptides , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Glutamic Acid/metabolism , Glutathione/metabolism , Kinetics , Membrane Transport Proteins/genetics , Metabolic Networks and Pathways , Substrate Specificity , gamma-Glutamyltransferase/genetics , gamma-Glutamyltransferase/metabolism
2.
Metab Eng ; 39: 60-70, 2017 01.
Article in English | MEDLINE | ID: mdl-27989807

ABSTRACT

Semipermeable membranes of cells frequently pose an obstacle in metabolic engineering by limiting uptake of substrates, intermediates, or xenobiotics. Previous attempts to overcome this barrier relied on the promiscuous nature of peptide transport systems, but often suffered from low versatility or chemical instability. Here, we present an alternative strategy to transport cargo molecules across the inner membrane of Escherichia coli based on chemical synthesis of a stable cargo-peptide vector construct, transport through the peptide import system, and efficient intracellular release of the cargo by the promiscuous enzyme γ-glutamyl transferase (GGT). Retaining the otherwise periplasmic GGT in the cytoplasm was critical for the functionality of the system, as was fine-tuning its expression in order to minimize toxic effects associated to cytoplasmic GGT expression. Given the established protocols of peptide synthesis and the flexibility of peptide transport and GGT, the system is expected to be suitable for a broad range of cargoes.


Subject(s)
Cell Membrane Permeability/physiology , Cell Membrane/metabolism , Escherichia coli/metabolism , Membrane Transport Proteins/metabolism , Metabolic Engineering/methods , Peptides/metabolism , gamma-Glutamyltransferase/metabolism , Biological Transport, Active/physiology , Biosynthetic Pathways/physiology , Escherichia coli/genetics , Genetic Enhancement/methods , Intracellular Fluid/metabolism , Membrane Transport Proteins/genetics , Metabolic Networks and Pathways/physiology , Peptides/genetics , gamma-Glutamyltransferase/genetics
3.
Chembiochem ; 18(1): 85-90, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27862817

ABSTRACT

The noncanonical amino acid S-allyl cysteine (Sac) is one of the major compounds of garlic extract and exhibits a range of biological activities. It is also a small bioorthogonal alkene tag capable of undergoing controlled chemical modifications, such as photoinduced thiol-ene coupling or Pd-mediated deprotection. Its small size guarantees minimal interference with protein structure and function. Here, we report a simple protocol efficiently to couple in-situ semisynthetic biosynthesis of Sac and its incorporation into proteins in response to amber (UAG) stop codons. We exploited the exceptional malleability of pyrrolysyl-tRNA synthetase (PylRS) and evolved an S-allylcysteinyl-tRNA synthetase (SacRS) capable of specifically accepting the small, polar amino acid instead of its long and bulky aliphatic natural substrate. We succeeded in generating a novel and inexpensive strategy for the incorporation of a functionally versatile amino acid. This will help in the conversion of orthogonal translation from a standard technique in academic research to industrial biotechnology.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Cysteine/analogs & derivatives , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Binding Sites , Cysteine/chemistry , Cysteine/metabolism , Cysteine Synthase/metabolism , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Methanosarcina/enzymology , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...