Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Clin Infect Dis ; 78(Supplement_2): S138-S145, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662693

ABSTRACT

BACKGROUND: Concerns that annual mass administration of ivermectin, the predominant strategy for onchocerciasis control and elimination, may not lead to elimination of parasite transmission (EoT) in all endemic areas have increased interest in alternative treatment strategies. One such strategy is moxidectin. We performed an updated economic assessment of moxidectin- relative to ivermectin-based strategies. METHODS: We investigated annual and biannual community-directed treatment with ivermectin (aCDTI, bCDTI) and moxidectin (aCDTM, bCDTM) with minimal or enhanced coverage (65% or 80% of total population taking the drug, respectively) in intervention-naive areas with 30%, 50%, or 70% microfilarial baseline prevalence (representative of hypo-, meso-, and hyperendemic areas). We compared programmatic delivery costs for the number of treatments achieving 90% probability of EoT (EoT90), calculated with the individual-based stochastic transmission model EPIONCHO-IBM. We used the costs for 40 years of program delivery when EoT90 was not reached earlier. The delivery costs do not include drug costs. RESULTS: aCDTM and bCDTM achieved EoT90 with lower programmatic delivery costs than aCDTI with 1 exception: aCDTM with minimal coverage did not achieve EoT90 in hyperendemic areas within 40 years. With minimal coverage, bCDTI delivery costs as much or more than aCDTM and bCDTM. With enhanced coverage, programmatic delivery costs for aCDTM and bCDTM were lower than for aCDTI and bCDTI. CONCLUSIONS: Moxidectin-based strategies could accelerate progress toward EoT and reduce programmatic delivery costs compared with ivermectin-based strategies. The costs of moxidectin to national programs are needed to quantify whether delivery cost reductions will translate into overall program cost reduction.


Subject(s)
Ivermectin , Macrolides , Onchocerciasis , Macrolides/therapeutic use , Macrolides/economics , Macrolides/administration & dosage , Onchocerciasis/drug therapy , Onchocerciasis/prevention & control , Onchocerciasis/economics , Onchocerciasis/epidemiology , Humans , Ivermectin/economics , Ivermectin/therapeutic use , Ivermectin/administration & dosage , Mass Drug Administration/economics , Disease Eradication/economics , Cost-Benefit Analysis
2.
Parasit Vectors ; 17(1): 137, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491528

ABSTRACT

BACKGROUND: After ivermectin became available, diethylcarbamazine (DEC) use was discontinued because of severe adverse reactions, including ocular reactions, in individuals with high Onchocerca volvulus microfilaridermia (microfilariae/mg skin, SmfD). Assuming long-term ivermectin use led to < 5 SmfD with little or no eye involvement, DEC + ivermectin + albendazole treatment a few months after ivermectin was proposed. In 2018, the US FDA approved moxidectin for treatment of O. volvulus infection. The Phase 3 study evaluated SmfD, microfilariae in the anterior chamber (mfAC) and adverse events (AEs) in ivermectin-naïve individuals with ≥ 10 SmfD after 8 mg moxidectin (n = 978) or 150 µg/kg ivermectin (n = 494) treatment. METHODS: We analyzed the data from 1463 participants with both eyes evaluated using six (0, 1-5, 6-10, 11-20, 21-40, > 40) mfAC and three pre-treatment (< 20, 20 to < 50, ≥ 50) and post-treatment (0, > 0-5, > 5) SmfD categories. A linear mixed model evaluated factors and covariates impacting mfAC levels. Ocular AEs were summarized by type and start post-treatment. Logistic models evaluated factors and covariates impacting the risk for ocular AEs. RESULTS: Moxidectin and ivermectin had the same effect on mfAC levels. These increased from pre-treatment to Day 4 and Month 1 in 20% and 16% of participants, respectively. Six and 12 months post-treatment, mfAC were detected in ≈5% and ≈3% of participants, respectively. Ocular Mazzotti reactions occurred in 12.4% of moxidectin- and 10.2% of ivermectin-treated participants without difference in type or severity. The risk for ≥ 1 ocular Mazzotti reaction increased for women (OR 1.537, 95% CI 1.096-2.157) and with mfAC levels pre- and 4 days post-treatment (OR 0: > 10 mfAC 2.704, 95% CI 1.27-5.749 and 1.619, 95% CI 0.80-3.280, respectively). CONCLUSIONS: The impact of SmfD and mfAC levels before and early after treatment on ocular AEs needs to be better understood before making decisions on the risk-benefit of strategies including DEC. Such decisions should take into account interindividual variability in SmfD, mfAC levels and treatment response and risks to even a small percentage of individuals.


Subject(s)
Intestinal Volvulus , Macrolides , Onchocerca volvulus , Onchocerciasis , Animals , Female , Humans , Anterior Chamber , Democratic Republic of the Congo , Double-Blind Method , Ghana , Ivermectin/adverse effects , Liberia , Microfilariae , Onchocerca , Onchocerciasis/drug therapy , Male
3.
Int J Parasitol ; 54(3-4): 171-183, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37993016

ABSTRACT

National programs in Africa have expanded their objectives from control of onchocerciasis (river blindness) as a public health problem to elimination of parasite transmission, motivated by the reduction of Onchocerca volvulus infection prevalence in many African meso- and hyperendemic areas due to mass drug administration of ivermectin (MDAi). Given the large, contiguous hypo-, meso-, and hyperendemic areas, sustainable elimination of onchocerciasis in sub-Saharan Africa requires delineation of geographic boundaries for parasite transmission zones, so that programs can consider the risk of parasite re-introduction through vector or human migration from areas with ongoing transmission when making decisions to stop MDAi. We propose that transmission zone boundaries can be delineated by characterising the parasite genetic population structure within and between potential zones. We analysed whole mitochondrial genome sequences of 189 O. volvulus adults to determine the pattern of genetic similarity across three West African countries: Ghana, Mali, and Côte d'Ivoire. Population genetic structure indicates that parasites from villages near the Pru, Daka, and Black Volta rivers in central Ghana belong to one parasite population, indicating that the assumption that river basins constitute individual transmission zones is not supported by the data. Parasites from Mali and Côte d'Ivoire are genetically distinct from those from Ghana. This research provides the basis for developing tools for elimination programs to delineate transmission zones, to estimate the risk of parasite re-introduction via vector or human movement when intervention is stopped in one area while transmission is ongoing in others, to identify the origin of infections detected post-treatment cessation, and to investigate whether persisting prevalence despite ongoing interventions in one area is due to parasites imported from others.


Subject(s)
Genome, Mitochondrial , Indans , Onchocerca volvulus , Onchocerciasis , Adult , Animals , Humans , Onchocerciasis/epidemiology , Onchocerciasis/prevention & control , Onchocerca volvulus/genetics , Africa, Western , Ivermectin/therapeutic use
4.
Parasit Vectors ; 16(1): 394, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907954

ABSTRACT

In its 'Road map for neglected tropical diseases 2021-2030', the World Health Organization outlined its targets for control and elimination of neglected tropical diseases (NTDs) and research needed to achieve them. For many NTDs, this includes research for new treatment options for case management and/or preventive chemotherapy. Our review of small-molecule anti-infective drugs recently approved by a stringent regulatory authority (SRA) or in at least Phase 2 clinical development for regulatory approval showed that this pipeline cannot deliver all new treatments needed. WHO guidelines and country policies show that drugs may be recommended for control and elimination for NTDs for which they are not SRA approved (i.e. for 'off-label' use) if efficacy and safety data for the relevant NTD are considered sufficient by WHO and country authorities. Here, we are providing an overview of clinical research in the past 10 years evaluating the anti-infective efficacy of oral small-molecule drugs for NTD(s) for which they are neither SRA approved, nor included in current WHO strategies nor, considering the research sponsors, likely to be registered with a SRA for that NTD, if found to be effective and safe. No such research has been done for yaws, guinea worm, Trypanosoma brucei gambiense human African trypanosomiasis (HAT), rabies, trachoma, visceral leishmaniasis, mycetoma, T. b. rhodesiense HAT, echinococcosis, taeniasis/cysticercosis or scabies. Oral drugs evaluated include sparfloxacin and acedapsone for leprosy; rifampicin, rifapentin and moxifloxacin for onchocerciasis; imatinib and levamisole for loiasis; itraconazole, fluconazole, ketoconazole, posaconazole, ravuconazole and disulfiram for Chagas disease, doxycycline and rifampicin for lymphatic filariasis; arterolane, piperaquine, artesunate, artemether, lumefantrine and mefloquine for schistosomiasis; ivermectin, tribendimidine, pyrantel, oxantel and nitazoxanide for soil-transmitted helminths including strongyloidiasis; chloroquine, ivermectin, balapiravir, ribavirin, celgosivir, UV-4B, ivermectin and doxycycline for dengue; streptomycin, amoxicillin, clavulanate for Buruli ulcer; fluconazole and isavuconazonium for mycoses; clarithromycin and dapsone for cutaneous leishmaniasis; and tribendimidine, albendazole, mebendazole and nitazoxanide for foodborne trematodiasis. Additional paths to identification of new treatment options are needed. One promising path is exploitation of the worldwide experience with 'off-label' treatment of diseases with insufficient treatment options as pursued by the 'CURE ID' initiative.


Subject(s)
Anti-Infective Agents , Ivermectin , Humans , Ivermectin/therapeutic use , Rifampin , Doxycycline , Fluconazole , Off-Label Use , Anti-Infective Agents/therapeutic use , Drug Combinations , Neglected Diseases/drug therapy , Neglected Diseases/prevention & control
5.
Trop Med Infect Dis ; 8(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37755906

ABSTRACT

WHO and endemic countries target elimination of transmission of Onchocerca volvulus, the parasite causing onchocerciasis. Population genetic analysis of O. volvulus may provide data to improve the evidence base for decisions on when, where, and for how long to deploy which interventions and post-intervention surveillance to achieve elimination. Development of necessary methods and tools requires parasites suitable for genetic analysis. Based on our experience with microfilariae obtained from different collaborators, we developed a microfilariae transfer procedure for large-scale studies in the Democratic Republic of Congo (DRC) comparing safety and efficacy of ivermectin, the mainstay of current onchocerciasis elimination strategies, and moxidectin, a new drug. This procedure is designed to increase the percentage of microfilariae in skin snips suitable for genetic analysis, improve assignment to metadata, and minimize time and materials needed by the researchers collecting the microfilariae. Among 664 microfilariae from South Sudan, 35.7% and 39.5% failed the mitochondrial and nuclear qPCR assay. Among the 576 microfilariae from DRC, 16.0% and 16.7% failed these assays, respectively. This difference may not only be related to the microfilariae transfer procedure but also to other factors, notably the ethanol concentration in the tubes in which microfilariae were stored (64% vs. ≥75%).

6.
Philos Trans R Soc Lond B Biol Sci ; 378(1887): 20220277, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37598705

ABSTRACT

Epidemiological and modelling studies suggest that elimination of Onchocerca volvulus transmission (EoT) throughout Africa may not be achievable with annual mass drug administration (MDA) of ivermectin alone, particularly in areas of high endemicity and vector density. Single-dose Phase II and III clinical trials demonstrated moxidectin's superiority over ivermectin for prolonged clearance of O. volvulus microfilariae. We used the stochastic, individual-based EPIONCHO-IBM model to compare the probabilities of reaching EoT between ivermectin and moxidectin MDA for a range of endemicity levels (30 to 70% baseline microfilarial prevalence), treatment frequencies (annual and biannual) and therapeutic coverage/adherence values (65 and 80% of total population, with, respectively, 5 and 1% of systematic non-adherence). EPIONCHO-IBM's projections indicate that biannual (six-monthly) moxidectin MDA can reduce by half the number of years necessary to achieve EoT in mesoendemic areas and might be the only strategy that can achieve EoT in hyperendemic areas. Data needed to improve modelling projections include (i) the effect of repeated annual and biannual moxidectin treatment; (ii) inter- and intra-individual variation in response to successive treatments with moxidectin or ivermectin; (iii) the effect of moxidectin and ivermectin treatment on L3 development into adult worms; and (iv) patterns of adherence to moxidectin and ivermectin MDA. This article is part of the theme issue 'Challenges in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.


Subject(s)
Onchocerciasis , Humans , Onchocerciasis/drug therapy , Onchocerciasis/epidemiology , Onchocerciasis/prevention & control , Ivermectin , Mass Drug Administration , Africa/epidemiology , Neglected Diseases
7.
Pathogens ; 12(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513818

ABSTRACT

Onchocerciasis is a neglected tropical disease targeted for elimination using ivermectin mass administration. Ivermectin kills the microfilariae and temporarily arrests microfilariae production by the macrofilariae. We genotyped 436 microfilariae from 10 people each in Ituri, Democratic Republic of the Congo (DRC), and Maridi County, South Sudan, collected before and 4-5 months after ivermectin treatment. Population genetic analyses identified 52 and 103 mitochondrial DNA haplotypes among the microfilariae from DRC and South Sudan, respectively, with few haplotypes shared between people. The percentage of genotype-based correct assignment to person within DRC was ~88% and within South Sudan ~64%. Rarefaction and extrapolation analysis showed that the genetic diversity in DRC, and even more so in South Sudan, was captured incompletely. The results indicate that the per-person adult worm burden is likely higher in South Sudan than DRC. Analyses of haplotype data from a subsample (n = 4) did not discriminate genetically between pre- and post-treatment microfilariae, confirming that post-treatment microfilariae are not the result of new infections. With appropriate sampling, mitochondrial haplotype analysis could help monitor changes in the number of macrofilariae in a population as a result of treatment, identify cases of potential treatment failure, and detect new infections as an indicator of continuing transmission.

8.
Parasit Vectors ; 16(1): 82, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36859332

ABSTRACT

The World Health Organization 'Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030' outlines the targets for control and elimination of neglected tropical diseases (NTDs). New drugs are needed to achieve some of them. We are providing an overview of the pipeline for new anti-infective drugs for regulatory registration and steps to effective use for NTD control and elimination. Considering drugs approved for an NTD by at least one stringent regulatory authority: fexinidazole, included in WHO guidelines for Trypanosoma brucei gambiense African trypanosomiasis, is in development for Chagas disease. Moxidectin, registered in 2018 for treatment of individuals ≥ 12 years old with onchocerciasis, is undergoing studies to extend the indication to 4-11-year-old children and obtain additional data to inform WHO and endemic countries' decisions on moxidectin inclusion in guidelines and policies. Moxidectin is also being evaluated for other NTDs. Considering drugs in at least Phase 2 clinical development, a submission is being prepared for registration of acoziborole as an oral treatment for first and second stage T.b. gambiense African trypanosomiasis. Bedaquiline, registered for tuberculosis, is being evaluated for multibacillary leprosy. Phase 2 studies of emodepside and flubentylosin in O. volvulus-infected individuals are ongoing; studies for Trichuris trichuria and hookworm are planned. A trial of fosravuconazole in Madurella mycetomatis-infected patients is ongoing. JNJ-64281802 is undergoing Phase 2 trials for reducing dengue viral load. Studies are ongoing or planned to evaluate oxantel pamoate for onchocerciasis and soil-transmitted helminths, including Trichuris, and oxfendazole for onchocerciasis, Fasciola hepatica, Taenia solium cysticercosis, Echinococcus granulosus and soil-transmitted helminths, including Trichuris. Additional steps from first registration to effective use for NTD control and elimination include country registrations, possibly additional studies to inform WHO guidelines and country policies, and implementation research to address barriers to effective use of new drugs. Relative to the number of people suffering from NTDs, the pipeline is small. Close collaboration and exchange of experience among all stakeholders developing drugs for NTDs may increase the probability that the current pipeline will translate into new drugs effectively implemented in affected countries.


Subject(s)
Anti-Infective Agents , Onchocerciasis , Trypanosomiasis, African , Animals , Macrolides
9.
Parasit Vectors ; 15(1): 462, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510275

ABSTRACT

It is recognised that paediatric indications and age-appropriate formulations are required to ensure that paediatric populations receive appropriate pharmacotherapeutic treatment. The lack of information on dosing, efficacy and safety data (labelling) is a well-recognised problem for all diseases affecting children. For neglected tropical diseases, the fact that they affect to a large extent poor and marginalised populations in low- and middle-income countries means that there is a low economic return on investment into paediatric development activities compared to other diseases [e.g. human immunodeficiency virus (HIV)]. This review provides an introduction to issues affecting the availability and development of paediatric population-relevant data and appropriate formulations of drugs for NTDs. We are summarising why age-appropriate formulations are important to ensure treatment efficacy, safety and effectiveness, outline initiatives to increase the number of paediatric indications/labelling and age-appropriate formulations, provide an overview of publicly available information on the formulations of oral drugs for NTDs relative to age appropriateness and give an introduction to options for age-appropriate formulations. The review completes with 'case studies' of recently developed paediatric formulations for NTDs, complemented by case studies for fixed-dose combinations for HIV infection in children since such formulations have not been developed for NTDs.


Subject(s)
HIV Infections , Tropical Medicine , Child , Humans , Child, Preschool , HIV Infections/drug therapy , Neglected Diseases/drug therapy , Drug Compounding
10.
PLoS Negl Trop Dis ; 16(4): e0010079, 2022 04.
Article in English | MEDLINE | ID: mdl-35476631

ABSTRACT

BACKGROUND: Our study in CDTI-naïve areas in Nord Kivu and Ituri (Democratic Republic of the Congo, DRC), Lofa County (Liberia) and Nkwanta district (Ghana) showed that a single 8 mg moxidectin dose reduced skin microfilariae density (microfilariae/mg skin, SmfD) better and for longer than a single 150µg/kg ivermectin dose. We now analysed efficacy by study area and pre-treatment SmfD (intensity of infection, IoI). METHODOLOGY/PRINCIPAL FINDINGS: Four and three IoI categories were defined for across-study and by-study area analyses, respectively. We used a general linear model to analyse SmfD 1, 6, 12 and 18 months post-treatment, a logistic model to determine the odds of undetectable SmfD from month 1 to month 6 (UD1-6), month 12 (UD1-12) and month 18 (UD1-18), and descriptive statistics to quantitate inter-interindividual response differences. Twelve months post-treatment, treatment differences (difference in adjusted geometric mean SmfD after moxidectin and ivermectin in percentage of the adjusted geometric mean SmfD after ivermectin treatment) were 92.9%, 90.1%, 86.8% and 84.5% in Nord Kivu, Ituri, Lofa and Nkwanta, and 74.1%, 84.2%, 90.0% and 95.4% for participants with SmfD 10-20, ≥20-<50, ≥50-<80, ≥80, respectively. Ivermectin's efficacy was lower in Ituri and Nkwanta than Nord Kivu and Lofa (p≤0.002) and moxidectin's efficacy lower in Nkwanta than Nord Kivu, Ituri and Lofa (p<0.006). Odds ratios for UD1-6, UD1-12 or UD1-18 after moxidectin versus ivermectin treatment exceeded 7.0. Suboptimal response (SmfD 12 months post-treatment >40% of pre-treatment SmfD) occurred in 0%, 0.3%, 1.6% and 3.9% of moxidectin and 12.1%, 23.7%, 10.8% and 28.0% of ivermectin treated participants in Nord Kivu, Ituri, Lofa and Nkwanta, respectively. CONCLUSIONS/SIGNIFICANCE: The benefit of moxidectin vs ivermectin treatment increased with pre-treatment IoI. The possibility that parasite populations in different areas have different drug susceptibility without prior ivermectin selection pressure needs to be considered and further investigated. CLINICAL TRIAL REGISTRATION: Registered on 14 November 2008 in Clinicaltrials.gov (ID: NCT00790998).


Subject(s)
Intestinal Volvulus , Onchocerciasis , Animals , Democratic Republic of the Congo/epidemiology , Ghana , Humans , Ivermectin/pharmacology , Ivermectin/therapeutic use , Liberia , Macrolides , Microfilariae , Onchocerciasis/drug therapy
11.
PLoS Negl Trop Dis ; 16(3): e0010005, 2022 03.
Article in English | MEDLINE | ID: mdl-35333880

ABSTRACT

BACKGROUND: Onchocerciasis ("river blindness"), is a neglected tropical disease caused by the filarial nematode Onchocerca volvulus and transmitted to humans through repeated bites by infective blackflies of the genus Simulium. Moxidectin was approved by the United States Food and Drug Administration in 2018 for the treatment of onchocerciasis in people at least 12 years of age. The pharmacokinetics of orally administered moxidectin in 18- to 60-year-old men and women infected with Onchocerca volvulus were investigated in a single-center, ivermectin-controlled, double-blind, randomized, single-ascending-dose, ascending severity of infection study in Ghana. METHODOLOGY/PRINCIPAL FINDINGS: Participants were randomized to either a single dose of 2, 4 or 8 mg moxidectin or ivermectin. Pharmacokinetic samples were collected prior to dosing and at intervals up to 12 months post-dose from 33 and 34 individuals treated with 2 and 4 mg moxidectin, respectively and up to 18 months post-dose from 31 individuals treated with 8 mg moxidectin. Moxidectin plasma concentrations were determined using high-performance liquid chromatography with fluorescence detection. Moxidectin plasma AUC0-∞ (2 mg: 26.7-31.7 days*ng/mL, 4 mg: 39.1-60.0 days*ng/mL, 8 mg: 99.5-129.0 days*ng/mL) and Cmax (2mg, 16.2 to17.3 ng/mL, 4 mg: 33.4 to 35.0 ng/mL, 8 mg: 55.7 to 74.4 ng/mL) were dose-proportional and independent of severity of infection. Maximum plasma concentrations were achieved 4 hours after drug administration. The mean terminal half-lives of moxidectin were 20.6, 17.7, and 23.3 days at the 2, 4 and 8 mg dose levels, respectively. CONCLUSION/SIGNIFICANCE: We found no relationship between severity of infection (mild, moderate or severe) and exposure parameters (AUC0-∞ and Cmax), T1/2 and Tmax for moxidectin. Tmax, volume of distribution (V/F) and oral clearance (CL/F) are similar to those in healthy volunteers from Europe. From a pharmacokinetic perspective, moxidectin is an attractive long-acting therapeutic option for the treatment of human onchocerciasis.


Subject(s)
Onchocerca volvulus , Onchocerciasis , Simuliidae , Administration, Oral , Adolescent , Adult , Animals , Female , Humans , Ivermectin/therapeutic use , Macrolides/therapeutic use , Male , Middle Aged , Onchocerciasis/drug therapy , Young Adult
12.
Front Genet ; 10: 1282, 2019.
Article in English | MEDLINE | ID: mdl-31998356

ABSTRACT

Onchocerciasis and lymphatic filariasis are targeted for elimination, primarily using mass drug administration at the country and community levels. Elimination of transmission is the onchocerciasis target and global elimination as a public health problem is the end point for lymphatic filariasis. Where program duration, treatment coverage, and compliance are sufficiently high, elimination is achievable for both parasites within defined geographic areas. However, transmission has re-emerged after apparent elimination in some areas, and in others has continued despite years of mass drug treatment. A critical question is whether this re-emergence and/or persistence of transmission is due to persistence of local parasites-i.e., the result of insufficient duration or drug coverage, poor parasite response to the drugs, or inadequate methods of assessment and/or criteria for determining when to stop treatment-or due to re-introduction of parasites via human or vector movement from another endemic area. We review recent genetics-based research exploring these questions in Onchocerca volvulus, the filarial nematode that causes onchocerciasis, and Wuchereria bancrofti, the major pathogen for lymphatic filariasis. We focus in particular on the combination of genomic epidemiology and genome-wide associations to delineate transmission zones and distinguish between local and introduced parasites as the source of resurgence or continuing transmission, and to identify genetic markers associated with parasite response to chemotherapy. Our ultimate goal is to assist elimination efforts by developing easy-to-use tools that incorporate genetic information about transmission and drug response for more effective mass drug distribution, surveillance strategies, and decisions on when to stop interventions to improve sustainability of elimination.

14.
Clin Infect Dis ; 66(suppl_4): S267-S274, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29860291

ABSTRACT

Background: Great strides have been made toward onchocerciasis elimination by mass drug administration (MDA) of ivermectin. Focusing on MDA-eligible areas, we investigated where the elimination goal can be achieved by 2025 by continuation of current practice (annual MDA with ivermectin) and where intensification or additional vector control is required. We did not consider areas hypoendemic for onchocerciasis with loiasis coendemicity where MDA is contraindicated. Methods: We used 2 previously published mathematical models, ONCHOSIM and EPIONCHO, to simulate future trends in microfilarial prevalence for 80 different settings (defined by precontrol endemicity and past MDA frequency and coverage) under different future treatment scenarios (annual, biannual, or quarterly MDA with different treatment coverage through 2025, with or without vector control strategies), assessing for each strategy whether it eventually leads to elimination. Results: Areas with 40%-50% precontrol microfilarial prevalence and ≥10 years of annual MDA may achieve elimination with a further 7 years of annual MDA, if not achieved already, according to both models. For most areas with 70%-80% precontrol prevalence, ONCHOSIM predicts that either annual or biannual MDA is sufficient to achieve elimination by 2025, whereas EPIONCHO predicts that elimination will not be achieved even with complementary vector control. Conclusions: Whether elimination will be reached by 2025 depends on precontrol endemicity, control history, and strategies chosen from now until 2025. Biannual or quarterly MDA will accelerate progress toward elimination but cannot guarantee it by 2025 in high-endemicity areas. Long-term concomitant MDA and vector control for high-endemicity areas might be useful.


Subject(s)
Antiparasitic Agents/administration & dosage , Disease Eradication , Insecticides/administration & dosage , Ivermectin/administration & dosage , Models, Theoretical , Onchocerciasis/prevention & control , Simuliidae/drug effects , Animals , Female , Humans , Insect Vectors/drug effects , Insect Vectors/parasitology , Male , Mass Drug Administration , Microfilariae , Onchocerciasis/drug therapy , Onchocerciasis/epidemiology , Onchocerciasis/transmission , Prevalence , Simuliidae/parasitology
15.
Int Health ; 10(suppl_1): i40-i48, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29471342

ABSTRACT

The use of alternative (or complementary) treatment strategies (ATSs) i.e. differing from annual community-directed treatment with ivermectin (CDTI) is required in some African foci to eliminate onchocerciasis by 2025. ATSs include vector control, biannual or pluriannual CDTI, better timing of CDTI, community-directed treatment with combinations of currently available anthelminthics or new drugs, and 'test-and-treat' (TNT) strategies requiring diagnosis of infection and/or contraindications to treatment for decisions on who to treat with what regimen. Two TNT strategies can be considered. Loa-first TNT, designed for loiasis-endemic areas and currently being evaluated using a rapid test (LoaScope), consists of identifying individuals with levels of Loa microfilaremia associated with a risk of post-ivermectin severe adverse events to exclude them from ivermectin treatment and in treating the rest (usually >97%) of the population safely. Oncho-first TNT consists of testing community members for onchocerciasis before giving treatment (currently ivermectin or doxycycline) to those who are infected. The choice of the ATS depends on the prevalences and intensities of infection with Onchocerca volvulus and Loa loa and on the relative cost-effectiveness of the strategies for the given epidemiological situation. Modelling can help select the optimal strategies, but field evaluations to determine the relative cost-effectiveness are urgently needed.


Subject(s)
Anthelmintics/therapeutic use , Disease Eradication/organization & administration , Ivermectin/therapeutic use , Onchocerciasis/drug therapy , Onchocerciasis/prevention & control , Animals , Humans , Insect Control/organization & administration , Onchocerca volvulus , Prevalence
16.
Lancet ; 392(10154): 1207-1216, 2018 10 06.
Article in English | MEDLINE | ID: mdl-29361335

ABSTRACT

BACKGROUND: The morbidity and socioeconomic effects of onchocerciasis, a parasitic disease that is primarily endemic in sub-Saharan Africa, have motivated large morbidity and transmission control programmes. Annual community-directed ivermectin treatment has substantially reduced prevalence. Elimination requires intensified efforts, including more efficacious treatments. We compared parasitological efficacy and safety of moxidectin and ivermectin. METHODS: This double-blind, parallel group, superiority trial was done in four sites in Ghana, Liberia, and the Democratic Republic of the Congo. We enrolled participants (aged ≥12 years) with at least 10 Onchocerca volvulus microfilariae per mg skin who were not co-infected with Loa loa or lymphatic filariasis microfilaraemic. Participants were randomly allocated, stratified by sex and level of infection, to receive a single oral dose of 8 mg moxidectin or 150 µg/kg ivermectin as overencapsulated oral tablets. The primary efficacy outcome was skin microfilariae density 12 months post treatment. We used a mixed-effects model to test the hypothesis that the primary efficacy outcome in the moxidectin group was 50% or less than that in the ivermectin group. The primary efficacy analysis population were all participants who received the study drug and completed 12-month follow-up (modified intention to treat). This study is registered with ClinicalTrials.gov, number NCT00790998. FINDINGS: Between April 22, 2009, and Jan 23, 2011, we enrolled and allocated 998 participants to moxidectin and 501 participants to ivermectin. 978 received moxidectin and 494 ivermectin, of which 947 and 480 were included in primary efficacy outcome analyses. At 12 months, skin microfilarial density (microfilariae per mg of skin) was lower in the moxidectin group (adjusted geometric mean 0·6 [95% CI 0·3-1·0]) than in the ivermectin group (4·5 [3·5-5·9]; difference 3·9 [3·2-4·9], p<0·0001; treatment difference 86%). Mazzotti (ie, efficacy-related) reactions occurred in 967 (99%) of 978 moxidectin-treated participants and in 478 (97%) of 494 ivermectin-treated participants, including ocular reactions (moxidectin 113 [12%] participants and ivermectin 47 [10%] participants), laboratory reactions (788 [81%] and 415 [84%]), and clinical reactions (944 [97%] and 446 [90%]). No serious adverse events were considered to be related to treatment. INTERPRETATION: Skin microfilarial loads (ie, parasite transmission reservoir) are lower after moxidectin treatment than after ivermectin treatment. Moxidectin would therefore be expected to reduce parasite transmission between treatment rounds more than ivermectin could, thus accelerating progress towards elimination. FUNDING: UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases.


Subject(s)
Anthelmintics/administration & dosage , Ivermectin/administration & dosage , Macrolides/administration & dosage , Onchocerca volvulus , Onchocerciasis/drug therapy , Adolescent , Animals , Anthelmintics/adverse effects , Democratic Republic of the Congo/epidemiology , Double-Blind Method , Endemic Diseases , Female , Ghana/epidemiology , Humans , Ivermectin/adverse effects , Liberia/epidemiology , Macrolides/adverse effects , Male , Microfilariae/drug effects , Onchocerciasis/epidemiology , Parasite Load , Skin/parasitology
17.
PLoS Negl Trop Dis ; 11(7): e0005816, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28746337

ABSTRACT

BACKGROUND: Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread. METHODOLOGY/PRINCIPAL FINDINGS: Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR. CONCLUSIONS/SIGNIFICANCE: This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations.


Subject(s)
Antiparasitic Agents/pharmacology , Drug Resistance , Gene Expression Profiling , Genetic Drift , Ivermectin/pharmacology , Onchocerca volvulus/drug effects , Onchocerca volvulus/genetics , Animals , Cameroon , Female , Genetic Variation , Genotype , Ghana , High-Throughput Nucleotide Sequencing , Humans , Onchocerca volvulus/classification , Onchocerciasis/parasitology , Quantitative Trait Loci
19.
BMC Med Ethics ; 18(1): 43, 2017 Jun 26.
Article in English | MEDLINE | ID: mdl-28651650

ABSTRACT

BACKGROUND: Between 2013 and 2016, West Africa experienced the largest ever outbreak of Ebola Virus Disease. In the absence of registered treatments or vaccines to control this lethal disease, the World Health Organization coordinated and supported research to expedite identification of interventions that could control the outbreak and improve future control efforts. Consequently, the World Health Organization Research Ethics Review Committee (WHO-ERC) was heavily involved in reviews and ethics discussions. It reviewed 24 new and 22 amended protocols for research studies including interventional (drug, vaccine) and observational studies. WHO-ERC REVIEWS: WHO-ERC provided the reviews within on average 6 working days. The WHO-ERC often could not provide immediate approval of protocols for reasons which were not Ebola Virus Disease specific but related to protocol inconsistencies, missing information and complex informed consents. WHO-ERC considerations on Ebola Virus Disease specific issues (benefit-risk assessment, study design, exclusion of pregnant women and children from interventional studies, data and sample sharing, collaborative partnerships including international and local researchers and communities, community engagement and participant information) are presented. CONCLUSIONS: To accelerate study approval in future public health emergencies, we recommend: (1) internally consistent and complete submissions with information documents in language participants are likely to understand, (2) close collaboration between local and international researchers from research inception, (3) generation of template agreements for data and sample sharing and use during the ongoing global consultations on bio-banks, (4) formation of Joint Scientific Advisory and Data Safety Review Committees for all studies linked to a particular intervention or group of interventions, (5) formation of a Joint Ethics Review Committee with representatives of the Ethics Committees of all institutions and countries involved to strengthen reviews through the different perspectives provided without the 'opportunity costs' for time to final approval of multiple, independent reviews, (6) direct information exchange between the chairs of advisory, safety review and ethics committees, (7) more Ethics Committee support for investigators than is standard and (8) a global consultation on criteria for inclusion of pregnant women and children in interventional studies for conditions which put them at particularly high risk of mortality or other irreversible adverse outcomes under standard-of-care.


Subject(s)
Biomedical Research/ethics , Emergencies , Epidemics , Ethical Review , Ethics Committees, Research , Hemorrhagic Fever, Ebola , Advisory Committees , Africa, Western , Bioethical Issues , Child , Disease Outbreaks , Ethics, Research , Female , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/prevention & control , Humans , Informed Consent , International Cooperation , Patient Selection , Pregnancy , Public Health , Research Design , Risk Assessment , World Health Organization
20.
Parasit Vectors ; 10(1): 240, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28511662

ABSTRACT

In a Letter to the Editor, Eberhard et al. question the validity of our model of skin snip sensitivity and argue against the use of skin snips to evaluate onchocerciasis elimination by mass drug administration. Here we discuss their arguments and compare model predictions with observed data to assess the validity of our model.


Subject(s)
Onchocerciasis , Humans , Mass Drug Administration , Skin
SELECTION OF CITATIONS
SEARCH DETAIL
...