Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 162: 40-7, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27479454

ABSTRACT

Experiments investigated irreversibility in pesticide sorption to soil. Sorption behaviour under abiotic conditions was quantified for chlorotoluron, prometryn and hexaconazole in three soils over periods of up to 274 days. An isotope-exchange procedure was used whereby sorption of (12)C- and (14)C-pesticide isotopes in shaken suspensions of three soils (56-168 days shaking) was followed by substitution of the isotopes in the liquid phase and a 14-day exchange phase. This was followed by forced isotope exchange where the sorbed (14)C material was exchanged by adding an excess of non-radiolabelled compound. Experiments were concluded with solvent extraction and soil combustion to determine remaining radioactivity. Under conditions of continuous shaking, the pesticide-soil systems took around four months to approach sorption equilibrium, resulting in strong asymmetry between the profiles of exchange for isotopes of all three compounds. Physically entrapped residues were released back into solution under the steep concentration gradient of forced isotope exchange and small amounts of radioactivity were still being released at the termination of the experiment. The profiles of exchange did not deviate markedly from ideal behaviour based on the assumption that sorption is fully reversible. Whilst the timescales for release of sorbed residues back into solution were very long, soil combustion at study termination only yielded <1-2% of applied radioactivity; this confirms that sorption processes under abiotic soil conditions were overwhelmingly reversible for this set of compounds and soils.


Subject(s)
Models, Chemical , Pesticides/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Pesticides/analysis , Phenylurea Compounds , Prometryne , Soil Pollutants/analysis
2.
Environ Toxicol Chem ; 20(8): 1740-5, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11491557

ABSTRACT

Aquatic exposure assessments for pesticides are generally based on laboratory studies performed in water alone or water sediment systems. Although aquatic macrophytes, which include a variety of bryophytes, macroalgae, and angiosperms, can be a significant component of many aquatic ecosystems, their impact on pesticide fate is generally not included in exposure assessments. To investigate the influence of aquatic plants on the fate and behavior of the pyrethroid insecticide lambda (lambda)-cyhalothrin, two laboratory experiments (to assess adsorption and degradation) and an indoor microcosm study (to assess fate under semirealistic conditions) were conducted. In the laboratory studies, adsorption to macrophytes was extensive and essentially irreversible, and degradation occurred rapidly by cleavage of the ester bond. In the indoor microcosm, which contained water, sediment, and macrophytes from a pond, degradation was also rapid, with DT50 and DT90 values of less than 3 and 19 h, respectively, for dissipation from the water column and of less than 3 and 56 h, respectively, for the whole system. For adsorptive and readily degraded pesticides like lambda-cyhalothrin, we conclude that macrophytes have considerable influence on fate and behavior in surface waters.


Subject(s)
Insecticides/pharmacokinetics , Plants/chemistry , Pyrethrins/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics , Adsorption , Biodegradation, Environmental , Biological Availability , Geologic Sediments/chemistry , Nitriles
SELECTION OF CITATIONS
SEARCH DETAIL
...