Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
MMWR Morb Mortal Wkly Rep ; 71(40): 1260-1264, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36201372

ABSTRACT

To evaluate progress toward prevention of enteric infections in the United States, the Foodborne Diseases Active Surveillance Network (FoodNet) conducts active population-based surveillance for laboratory-diagnosed infections caused by Campylobacter, Cyclospora, Listeria, Salmonella, Shiga toxin-producing Escherichia coli (STEC), Shigella, Vibrio, and Yersinia at 10 U.S. sites. This report summarizes preliminary 2021 data and describes changes in annual incidence compared with the average annual incidence for 2016-2018, the reference period for the U.S. Department of Health and Human Services' (HHS) Healthy People 2030 goals for some pathogens (1). During 2021, the incidence of infections caused by Salmonella decreased, incidence of infections caused by Cyclospora, Yersinia, and Vibrio increased, and incidence of infections caused by other pathogens did not change. As in 2020, behavioral modifications and public health interventions implemented to control the COVID-19 pandemic might have decreased transmission of enteric infections (2). Other factors (e.g., increased use of telemedicine and continued increase in use of culture-independent diagnostic tests [CIDTs]) might have altered their detection or reporting (2). Much work remains to achieve HHS Healthy People 2030 goals, particularly for Salmonella infections, which are frequently attributed to poultry products and produce, and Campylobacter infections, which are frequently attributed to chicken products (3).


Subject(s)
COVID-19 , Foodborne Diseases , Vibrio , Foodborne Diseases/epidemiology , Humans , Incidence , Pandemics , Population Surveillance , Salmonella , United States/epidemiology , Watchful Waiting
2.
MMWR Morb Mortal Wkly Rep ; 70(38): 1332-1336, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34555002

ABSTRACT

Foodborne illnesses are a substantial and largely preventable public health problem; before 2020 the incidence of most infections transmitted commonly through food had not declined for many years. To evaluate progress toward prevention of foodborne illnesses in the United States, the Foodborne Diseases Active Surveillance Network (FoodNet) of CDC's Emerging Infections Program monitors the incidence of laboratory-diagnosed infections caused by eight pathogens transmitted commonly through food reported by 10 U.S. sites.* FoodNet is a collaboration among CDC, 10 state health departments, the U.S. Department of Agriculture's Food Safety and Inspection Service (USDA-FSIS), and the Food and Drug Administration. This report summarizes preliminary 2020 data and describes changes in incidence with those during 2017-2019. During 2020, observed incidences of infections caused by enteric pathogens decreased 26% compared with 2017-2019; infections associated with international travel decreased markedly. The extent to which these reductions reflect actual decreases in illness or decreases in case detection is unknown. On March 13, 2020, the United States declared a national emergency in response to the COVID-19 pandemic. After the declaration, state and local officials implemented stay-at-home orders, restaurant closures, school and child care center closures, and other public health interventions to slow the spread of SARS-CoV-2, the virus that causes COVID-19 (1). Federal travel restrictions were declared (1). These widespread interventions as well as other changes to daily life and hygiene behaviors, including increased handwashing, have likely changed exposures to foodborne pathogens. Other factors, such as changes in health care delivery, health care-seeking behaviors, and laboratory testing practices, might have decreased the detection of enteric infections. As the pandemic continues, surveillance of illness combined with data from other sources might help to elucidate the factors that led to the large changes in 2020; this understanding could lead to improved strategies to prevent illness. To reduce the incidence of these infections concerted efforts are needed, from farm to processing plant to restaurants and homes. Consumers can reduce their risk of foodborne illness by following safe food-handling and preparation recommendations.


Subject(s)
COVID-19/epidemiology , Food Microbiology/statistics & numerical data , Food Parasitology/statistics & numerical data , Foodborne Diseases/epidemiology , Pandemics , Watchful Waiting , Adolescent , Child , Child, Preschool , Foodborne Diseases/microbiology , Foodborne Diseases/parasitology , Humans , Incidence , Infant , United States/epidemiology
3.
Foodborne Pathog Dis ; 14(12): 701-710, 2017 12.
Article in English | MEDLINE | ID: mdl-28926300

ABSTRACT

BACKGROUND: Foodborne disease data collected during outbreak investigations are used to estimate the percentage of foodborne illnesses attributable to specific food categories. Current food categories do not reflect whether or how the food has been processed and exclude many multiple-ingredient foods. MATERIALS AND METHODS: Representatives from three federal agencies worked collaboratively in the Interagency Food Safety Analytics Collaboration (IFSAC) to develop a hierarchical scheme for categorizing foods implicated in outbreaks, which accounts for the type of processing and provides more specific food categories for regulatory purposes. IFSAC also developed standard assumptions for assigning foods to specific food categories, including some multiple-ingredient foods. The number and percentage of outbreaks assignable to each level of the hierarchy were summarized. RESULTS: The IFSAC scheme is a five-level hierarchy for categorizing implicated foods with increasingly specific subcategories at each level, resulting in a total of 234 food categories. Subcategories allow distinguishing features of implicated foods to be reported, such as pasteurized versus unpasteurized fluid milk, shell eggs versus liquid egg products, ready-to-eat versus raw meats, and five different varieties of fruit categories. Twenty-four aggregate food categories contained a sufficient number of outbreaks for source attribution analyses. Among 9791 outbreaks reported from 1998 to 2014 with an identified food vehicle, 4607 (47%) were assignable to food categories using this scheme. Among these, 4218 (92%) were assigned to one of the 24 aggregate food categories, and 840 (18%) were assigned to the most specific category possible. CONCLUSIONS: Updates to the food categorization scheme and new methods for assigning implicated foods to specific food categories can help increase the number of outbreaks attributed to a single food category. The increased specificity of food categories in this scheme may help improve source attribution analyses, eventually leading to improved foodborne illness source attribution estimates and enhanced food safety and regulatory efforts.


Subject(s)
Disease Outbreaks , Food Contamination , Food/classification , Foodborne Diseases/epidemiology , Dairy Products/microbiology , Eggs/microbiology , Food Handling , Food Microbiology , Food Safety , Fruit/microbiology , Humans , Meat/microbiology , Pasteurization
4.
J Public Health Manag Pract ; 17(6): 534-41, 2011.
Article in English | MEDLINE | ID: mdl-21964366

ABSTRACT

INTRODUCTION: In Maryland, county Food Protection Programs (FPP), housed within Environmental Public Health (EPH) Divisions, maintain responsibility for regular inspection of all food service facilities (FSF). With growing concerns about how our food supply is protected, it is important to determine the state and effectiveness of our food safety systems. This research elucidates the roles, responsibilities, strengths, and weaknesses of Food Safety and Protection Programs in Maryland. METHODS: A 16-question survey tool, which addressed facets of the local food protection infrastructure, including FSF inspections, staffing, budget, and foodborne illness surveillance, was distributed to all 24 county FPP. RESULTS: The number of FSF in Maryland increased 97% from 2001 to 2006 and counties had an average inspection completion rate of 73%, with a 4% increase over the time period. Statewide, there were 4.1 EPH full-time employees (FTE) per 10 000 population and 1.6 FPP FTE per 10 000 population. EPH Division budgets increased 63% statewide, from $19.5 million in 2000 to $31.9 million in 2007. FPP budgets also increased 59% over the period, from $6.2 million in 2000 to $9.8 million in 2007. CONCLUSIONS: This study offers new quantitative measures of the demands, capacities, and performance of Food Protection and Safety Programs in Maryland. This assessment of local EPH and FPP capacity also offers insight into the strengths and weaknesses of the local food protection and safety infrastructure. Importantly, it reveals an infrastructure and dedicated food protection workforce that inspects the food supply and responds to foodborne illness outbreaks. Yet, resources vary substantially from county to county, impacting which services can be provided and how well they can be performed. This can, in turn, impact the potential risk of foodborne illness and the public's overall health.


Subject(s)
Food Safety , Safety Management/organization & administration , State Government , Data Collection , Food Inspection , Maryland , Organizational Case Studies , Public Health , Safety Management/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...