Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc ; 3(9): e872, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37671955

ABSTRACT

The drug discovery landscape is ever-evolving and constantly demands revolutionary technology advancements in protein expression and production laboratories. We have built a higher-throughput mid-scale semi-automated protein expression and screening platform to accelerate drug discovery research. The workflow described here enables comprehensive expression and purification screening assessment of challenging or difficult-to-express recombinant proteins in a fast and efficient manner by delivering small but sufficient amounts of high-quality proteins. The platform has been implemented for a wide range of applications that include identification of optimal constructs and chaperones for poorly expressing proteins, assessment of co-expression partners for expressing stable multiprotein complexes, and suitable buffer/additive screening for insoluble or aggregation-prone proteins. The approach allows parallel expression, purification, and characterization of 24 different samples using co-infection or a polycistronic approach in insect cells and enables parallel testing of multiple parameters to improve protein yields. The strategy has been successfully adopted for screening intracellular and secreted proteins in Escherichia coli, mammalian transient expression, and baculovirus expression vector systems. Proteins purified from this platform are used for several structural and functional screens, such as negative staining, biochemical activity assays, mass spectrometry, surface plasmon resonance, and DNA-encoded chemical library screens. In this article, for simplicity, we have focused on detailed expression and purification screening of intracellular protein complexes from insect cells. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Baculovirus generation via homologous recombination Support Protocol 1: Anti-glycoprotein 64 antibody assay Basic Protocol 2: Generation of insect cell biomass expressing target protein(s) Basic Protocol 3: Mid-scale affinity purification Support Protocol 2: Automated method for affinity purification on Hamilton STAR Basic Protocol 4: Size exclusion chromatography Support Protocol 3: Chromeleon 7 operation on Vanquish Duo.


Subject(s)
Acetaminophen , Aspirin , Animals , Baculoviridae , Biological Assay , Drug Discovery , Escherichia coli , Mammals
2.
Science ; 367(6483): 1224-1230, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32079680

ABSTRACT

Cluster of differentiation 20 (CD20) is a B cell membrane protein that is targeted by monoclonal antibodies for the treatment of malignancies and autoimmune disorders but whose structure and function are unknown. Rituximab (RTX) has been in clinical use for two decades, but how it activates complement to kill B cells remains poorly understood. We obtained a structure of CD20 in complex with RTX, revealing CD20 as a compact double-barrel dimer bound by two RTX antigen-binding fragments (Fabs), each of which engages a composite epitope and an extensive homotypic Fab:Fab interface. Our data suggest that RTX cross-links CD20 into circular assemblies and lead to a structural model for complement recruitment. Our results further highlight the potential relevance of homotypic Fab:Fab interactions in targeting oligomeric cell-surface markers.


Subject(s)
Antigens, CD20/chemistry , Rituximab/chemistry , Antigens, CD20/immunology , Complement System Proteins/immunology , Cryoelectron Microscopy , Humans , Immunoglobulin Fab Fragments/chemistry , Protein Conformation , Protein Multimerization , Rituximab/immunology
3.
Cell Chem Biol ; 27(3): 306-313.e4, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31732432

ABSTRACT

Voltage-gated sodium (Nav) channels respond to changes in the membrane potential of excitable cells through the concerted action of four voltage-sensor domains (VSDs). Subtype Nav1.7 plays an important role in the propagation of signals in pain-sensing neurons and is a target for the clinical development of novel analgesics. Certain inhibitory cystine knot (ICK) peptides produced by venomous animals potently modulate Nav1.7; however, the molecular mechanisms underlying their selective binding and activity remain elusive. This study reports on the design of a library of photoprobes based on the potent spider toxin Huwentoxin-IV and the determination of the toxin binding interface on VSD2 of Nav1.7 through a photocrosslinking and tandem mass spectrometry approach. Our Huwentoxin-IV probes selectively crosslink to extracellular loop S1-S2 and helix S3 of VSD2 in a chimeric channel system. Our results provide a strategy that will enable mapping of sites of interaction of other ICK peptides on Nav channels.


Subject(s)
Cross-Linking Reagents/pharmacology , Molecular Probes/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Spider Venoms/pharmacology , Binding Sites/drug effects , Cross-Linking Reagents/chemical synthesis , Cross-Linking Reagents/chemistry , Humans , Models, Molecular , Molecular Probes/chemical synthesis , Molecular Probes/chemistry , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Photochemical Processes , Spider Venoms/chemical synthesis , Spider Venoms/chemistry
4.
Methods Mol Biol ; 2025: 51-68, 2019.
Article in English | MEDLINE | ID: mdl-31267448

ABSTRACT

The expression analysis of recombinant proteins is a challenging step in any high-throughput protein production pipeline. Often multiple expression systems and a variety of expression construct designs are considered for the production of a protein of interest. There is a strong need to triage constructs rapidly and systematically. This chapter describes a semiautomated method for the simultaneous purification and characterization of proteins expressed from multiple samples of expression cultures from the E. coli, baculovirus expression vector system, and mammalian transient expression systems. This method assists in the selection of the most promising expression construct(s) or the most favorable expression condition(s) to move forward into large-scale protein production.


Subject(s)
Recombinant Proteins/metabolism , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics
6.
Cell ; 176(4): 702-715.e14, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30661758

ABSTRACT

Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/ultrastructure , Peptides/metabolism , Spider Venoms/metabolism , Amino Acid Sequence , Animals , Binding Sites , CHO Cells , Cricetulus , Cryoelectron Microscopy/methods , Crystallography, X-Ray/methods , HEK293 Cells , Humans , Ion Channel Gating , Peptides/toxicity , Protein Domains , Spider Venoms/toxicity , Spiders , Voltage-Gated Sodium Channel Blockers , Voltage-Gated Sodium Channels/metabolism
7.
Dev Cell ; 31(4): 487-502, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25446517

ABSTRACT

Proteins of the HORMA domain family play central, but poorly understood, roles in chromosome organization and dynamics during meiosis. In Caenorhabditis elegans, four such proteins (HIM-3, HTP-1, HTP-2, and HTP-3) have distinct but overlapping functions. Through combined biochemical, structural, and in vivo analysis, we find that these proteins form hierarchical complexes through binding of their HORMA domains to cognate peptides within their partners' C-terminal tails, analogous to the "safety belt" binding mechanism of Mad2. These interactions are critical for recruitment of HIM-3, HTP-1, and HTP-2 to chromosome axes. HTP-3, in addition to recruiting the other HORMA domain proteins to the axis, plays an independent role in sister chromatid cohesion and double-strand break formation. Finally, we find that mammalian HORMAD1 binds a motif found both at its own C terminus and at that of HORMAD2, indicating that this mode of intermolecular association is a conserved feature of meiotic chromosome structure in eukaryotes.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cell Cycle Proteins/metabolism , Chromosome Pairing/genetics , Chromosomes/metabolism , Meiosis/physiology , Synaptonemal Complex/metabolism , Animals , Caenorhabditis elegans/cytology , Chromosome Segregation/physiology , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...