Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 6: e6161, 2019.
Article in English | MEDLINE | ID: mdl-30643677

ABSTRACT

BACKGROUND: Young women occasionally engage in dietary restrictions accompanied by fasting for the purpose of losing weight, but such restrictions have various effects on body functions. The recent increase in the number of people suffering from osteoporosis has become a major social problem mainly in industrialized countries.Therefore, we think it is important to understand the effects of fasting on bone vulnerability, especially to bone quality. METHODS: Animals used male Wister rats weighing 130 g (6 weeks of age), and were divided into a control group (n = 5) and a fasting group (n = 6). The experimental period was 14 days, the control group had ad libitum food throughout the experimental period, the fasted group was fasted for 4 days, and than, had ad libitum food for 10 days. In this study, parameters related to bone fragility due to three-dimensional bone architecture were determined on Contrast enhanced micro-CT images of the lumbar spine and were used as a method for the evaluation of bone quality. In addition, a time-course observation of each individual was carried out during the fasting period and later upon resuming food intake. Cross-sectional images of all vertebrae were obtained from radiographic computed tomography and were analyzed by using Latheta software ver. 3.0 (Hitachi-Aloka Medical, Nagasaki, Japan). The region of interest that was misrecognized in each cross-sectional image was made consistent with the anatomical structure by carrying out corrections manually and by identifying the cortical bone areas and cancellous bone areas. RESULTS: Our findings showed that while single fasting for 96 h did not cause any major change in the macroscopic morphology of bone, it caused a marked decrease in bone density. In addition, the minimum cross-sectional moment, which indicated the "strength against bending" as well as the polar moment that indicated the "strength against torsion" were both lower than in non-fasted rats. Further, after resumption of feeding, bone mineral content in the fasting group recovered rapidly and starting at day 4 after resumption of feeding, there was no difference with the control group. On the other hand, the values of the minimum cross-sectional moment and polar moment did not recover, and the difference with the control group increased during the feeding period. DISCUSSION: On the basis of this study, the authors estimate that the fasting-induced decrease in bone minimum cross-sectional moment and polar moment may have been due to changes affecting some factors involved in bone quality, and thus could be useful as a parameter in future studies aimed at elucidating bone quality. At least, in the case where bone change accompanied with a change in macroscopic distribution of mineral components occurs, the values of minimum cross-sectional moment and polar moment are considered to be bone parameters that will provide valuable information to elucidate bone quality.

2.
J Food Process Preserv ; 41(1): e12857, 2017 02.
Article in English | MEDLINE | ID: mdl-28239213

ABSTRACT

Raw egg white undergoes sol-gel transition by heat treatment, which changes it to an elastic gel. Here, protease treatment to render a new texture to heated egg white gel was applied. Protease-treated gels exhibited ductile flow without obvious rupture points. Transmission electron microscopy analysis showed that in protease-treated gels, protein aggregates were distributed more homogeneously compared with that observed in the untreated control, probably because ovalbumin was digested into small peptides as revealed by SDS-PAGE. The properties of the gel were evaluated by sensory tests and by measuring the movement of the masseter muscle, using surface electromyography. Results showed that maximum bite force and mastication duration were decreased for the protease-treated gels, which were evaluated as being softer, smoother, less elastic and better textured. Overall, our results indicate that protease-treated egg white gel has superior qualities and is easier to swallow than the untreated gel. PRACTICAL APPLICATIONS: In the food industry, the use of egg white is limited compared with that of egg yolk and whole eggs. In this study, we performed protease treatment to generate a new food material with smoother and softer texture compared with heat treated egg white. Our findings may expand the consumption of egg white, which can be consumed by people with mastication and swallowing disorders, and reduce the waste of egg white as a surplus product.

3.
PLoS One ; 11(4): e0153542, 2016.
Article in English | MEDLINE | ID: mdl-27100285

ABSTRACT

INTRODUCTION: We investigated whether adding ultrafine (nano-scale) oxygen-carrying bubbles to water concurrently with dissolved carbon-dioxide (CO2) could result in safe, long-duration anesthesia for fish. RESULTS: To confirm the lethal effects of CO2 alone, fishes were anesthetized with dissolved CO2 in 20°C seawater. Within 30 minutes, all fishes, regardless of species, died suddenly due to CO2-induced narcosis, even when the water was saturated with oxygen. Death was attributed to respiration failure caused by hypoxemia. When ultrafine oxygen-carrying bubbles were supplied along with dissolved CO2, five chicken grunts were able to remain anesthetized for 22 hours and awoke normally within 2-3 hours after cessation of anesthesia. CONCLUSIONS: The high internal pressures and oxygen levels of the ultrafine bubbles enabled efficient oxygen diffusion across the branchia and permitted the organismal oxygen demands of individual anesthetized fish to be met. Thus, we demonstrated a method for safe, long-duration carbon dioxide anesthesia in living fish under normal water temperatures.


Subject(s)
Anesthesia, General/methods , Anesthetics, Combined/administration & dosage , Carbon Dioxide/administration & dosage , Fishes/physiology , Microbubbles , Nanotechnology/methods , Oxygen/administration & dosage , Animals , Hypoxia/chemically induced , Respiration
4.
PLoS One ; 8(11): e80085, 2013.
Article in English | MEDLINE | ID: mdl-24224039

ABSTRACT

In humans, emaciation from long-term dietary deficiencies, such as anorexia, reportedly increases physical activity and brain atrophy. However, the effects of single short-term fasting on brain tissue or behavioral activity patterns remain unclear. To clarify the impact of malnutrition on brain function, we conducted a single short-term fasting study as an anorexia model using male adult mice and determined if changes occurred in migratory behavior as an expression of brain function and in brain tissue structure. Sixteen-week-old C57BL/6J male mice were divided into either the fasted group or the control group. Experiments were conducted in a fixed indoor environment. We examined the effects of fasting on the number of nerve cells, structural changes in the myelin and axon density, and brain atrophy. For behavior observation, the amount of food and water consumed, ingestion time, and the pattern of movement were measured using a time-recording system. The fasted mice showed a significant increase in physical activity and their rhythm of movement was disturbed. Since the brain was in an abnormal state after fasting, mice that were normally active during the night became active regardless of day or night and performed strenuous exercise at a high frequency. The brain weight did not change by a fast, and brain atrophy was not observed. Although no textural change was apparent by fasting, the neuronal neogenesis in the subventricular zone and hippocampus was inhibited, causing disorder of the brain function. A clear association between the suppression of encephalic neuropoiesis and overactivity was not established. However, it is interesting that the results of this study suggest that single short-term fasting has an effect on encephalic neuropoiesis.


Subject(s)
Behavior, Animal/physiology , Brain/metabolism , Fasting/physiology , Animals , Axons/metabolism , Eating/physiology , Male , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism
5.
J Food Sci ; 74(9): E495-501, 2009.
Article in English | MEDLINE | ID: mdl-20492111

ABSTRACT

This study evaluated the relationship between squid flesh transparency and muscle tissue microstructure. Squid mantle muscle was stored at 4 degrees C after being transported for 2 h by 4 different transportation methods used commonly in Japan (Group 1: live squid packed in ice-cold seawater; Group 2: live squid packed at 4 degrees C; Group 3: squid killed immediately after harvest and packed at 4 degrees C; Group 4: live squid packed in a fish tank containing seawater). Parameters of muscle tissue transparency were measured by an image analysis of digital images of squid muscle tissue. The mantle muscle tissue was observed under a transmission electron microscope to determine the postmortem structural changes at the cellular level. The ATP content of muscle tissue and rupture energy of squid flesh were also measured. As a result, the transparency of squid flesh and the ATP content of the muscles showed the same pattern of change in degree as time passed. The values of these parameters were highest in the group of squid killed immediately followed in order by those transported live, the refrigerated squid, and squid stored in ice-cold seawater. The mantle muscle tissue started to lose its transparency when the ATP in the muscle tissue started to decline. Disintegration of squid muscle tissue structure at the cellular level during storage under refrigeration for 24 h (4 degrees C) was observed in all methods of transportation. This suggested that destruction of the squid muscle tissue structure by autolysis is remarkably fast. The muscle tissue structure disintegrates due to decomposition of the muscle proteins, and muscle transparency is lost because the entire muscle develops a mixed coarse-minute structure.


Subject(s)
Decapodiformes/chemistry , Muscles/pathology , Seafood/analysis , Adenosine Triphosphate/analysis , Animals , Autolysis , Color , Compressive Strength , Food Handling/methods , Microscopy, Electron, Transmission , Muscles/chemistry , Refrigeration , Time Factors
6.
Exp Toxicol Pathol ; 59(1): 9-16, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17596924

ABSTRACT

A monkey model (Cynomolgus) was established to evaluate the delayed neurological damage evident at areas distant from ischemic cerebral foci. In addition to proton magnetic resonance spectroscopy (MRS) monitoring in life, histological examinations of specimens of the brain was conducted on lesions produced 6h and 1, 2, 4 and 8 weeks after unilateral (left) permanent middle cerebral artery occlusion (pMCO) on five monkeys. In addition to the typical images evident at primary ischemic foci around the middle cerebral artery, MRS revealed and enhanced, clearer region, due to edema extending into the reticular and compact area of the left substantia nigra one week after pMCO, inducing right hemiparesis caused by focal cerebral ischemia. Similar histological lesions were also induced in the left thalamus 4 weeks after pMCO. Thereafter, a variety of histological findings including astrocytic activation, reduced number of nerve cells and gliosis were found in the above described areas far apart from the original ischemic cerebral foci. Our monkey model should be suitable for studies elucidating the pathological process in cerebral ischemia as well as for investigating therapeutic strategies involving ischemic stroke in humans.


Subject(s)
Arterial Occlusive Diseases/pathology , Brain Ischemia/pathology , Disease Models, Animal , Magnetic Resonance Spectroscopy/methods , Middle Cerebral Artery/pathology , Animals , Arterial Occlusive Diseases/complications , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Brain Ischemia/etiology , Brain Ischemia/metabolism , Gliosis/complications , Gliosis/metabolism , Gliosis/pathology , Macaca fascicularis , Magnetic Resonance Imaging , Neurons/pathology , Paresis/etiology , Paresis/metabolism , Paresis/physiopathology , Thalamus/pathology
7.
Biosci Biotechnol Biochem ; 70(2): 462-70, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16495664

ABSTRACT

Oyster extract was prepared by hydrolysis of oyster protein with proteases, Aloase (a protease from Bacillus subtilis), and Pancitase (a protease from Aspergillus oryzae). Rats were fed a diet containing 20% casein (the control diet) or 15% casein and 5% oyster extract (the oyster extract diet) as the protein source. The oyster extract diet exerted a significant reduction in serum cholesterol and liver triglyceride concentrations as compared with the control diet in Sprague-Dawley (SD) rats fed cholesterol-supplemented diets for 4 weeks. The activities of cytosolic fatty acid synthase and glucose-6-phosphate dehydrogenase were significantly lower in the oyster extract group than in the control group in the liver of SD rats. Hepatic cholesterol and triglyceride concentrations were significantly lower in spontaneously hypertensive (SH) rats and Otsuka Long-Evans Tokushima Fatty (OLETF) rats, type 2 diabetic rats, fed the oyster extract diet, for 4 weeks and 4 months respectively, than in those fed the control diet in the cholesterol-free diet. Blood pressure was significantly lower in the oyster extract group than in the control group at the 2nd and 4th weeks after the beginning of feeding experimental diets in SH rats. These results suggest that oyster extract prepared by hydrolysis of oyster induces triglyceride-lowering activity in the liver through a decrease in hepatic lipogenesis in SD rats, and that it exerts the antihypertensive effect in SH rats.


Subject(s)
Blood Glucose/drug effects , Blood Pressure/drug effects , Cell Extracts/pharmacology , Hypertension/diet therapy , Hypertension/physiopathology , Lipid Metabolism/drug effects , Ostreidae/chemistry , Animals , Blood Glucose/metabolism , Cell Extracts/chemistry , Feces/chemistry , Hypertension/blood , Hypertension/metabolism , Liver/drug effects , Liver/metabolism , Male , Molecular Weight , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...