Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 82: 171-182, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395194

ABSTRACT

Metabolic fluxes and their control mechanisms are fundamental in cellular metabolism, offering insights for the study of biological systems and biotechnological applications. However, quantitative and predictive understanding of controlling biochemical reactions in microbial cell factories, especially at the system level, is limited. In this work, we present ARCTICA, a computational framework that integrates constraint-based modelling with machine learning tools to address this challenge. Using the model cyanobacterium Synechocystis sp. PCC 6803 as chassis, we demonstrate that ARCTICA effectively simulates global-scale metabolic flux control. Key findings are that (i) the photosynthetic bioproduction is mainly governed by enzymes within the Calvin-Benson-Bassham (CBB) cycle, rather than by those involve in the biosynthesis of the end-product, (ii) the catalytic capacity of the CBB cycle limits the photosynthetic activity and downstream pathways and (iii) ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a major, but not the most, limiting step within the CBB cycle. Predicted metabolic reactions qualitatively align with prior experimental observations, validating our modelling approach. ARCTICA serves as a valuable pipeline for understanding cellular physiology and predicting rate-limiting steps in genome-scale metabolic networks, and thus provides guidance for bioengineering of cyanobacteria.


Subject(s)
Photosynthesis , Synechocystis , Photosynthesis/physiology , Metabolic Networks and Pathways/genetics , Synechocystis/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
2.
NPJ Syst Biol Appl ; 9(1): 47, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739963

ABSTRACT

Understanding energy and redox homeostasis and carbon partitioning is crucial for systems metabolic engineering of cell factories. Carbon metabolism alone cannot achieve maximal accumulation of metabolites in production hosts, since an efficient production of target molecules requires energy and redox balance, in addition to carbon flow. The interplay between cofactor regeneration and heterologous production in photosynthetic microorganisms is not fully explored. To investigate the optimality of energy and redox metabolism, while overproducing alkenes-isobutene, isoprene, ethylene and 1-undecene, in the cyanobacterium Synechocystis sp. PCC 6803, we applied stoichiometric metabolic modelling. Our network-wide analysis indicates that the rate of NAD(P)H regeneration, rather than of ATP, controls ATP/NADPH ratio, and thereby bioproduction. The simulation also implies that energy and redox balance is interconnected with carbon and nitrogen metabolism. Furthermore, we show that an auxiliary pathway, composed of serine, one-carbon and glycine metabolism, supports cellular redox homeostasis and ATP cycling. The study revealed non-intuitive metabolic pathways required to enhance alkene production, which are mainly driven by a few key reactions carrying a high flux. We envision that the presented comparative in-silico metabolic analysis will guide the rational design of Synechocystis as a photobiological production platform of target chemicals.


Subject(s)
Synechocystis , Oxidation-Reduction , Homeostasis , Carbon , Adenosine Triphosphate
3.
Physiol Plant ; 173(2): 624-638, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33963557

ABSTRACT

The use of photosynthetic microbes as synthetic biology hosts for the sustainable production of commodity chemicals and even fuels has received increasing attention over the last decade. The number of studies published, tools implemented, and resources made available for microalgae have increased beyond expectations during the last few years. However, the tools available for genetic engineering in these organisms still lag those available for the more commonly used heterotrophic host organisms. In this mini-review, we provide an overview of the photosynthetic microbes most commonly used in synthetic biology studies, namely cyanobacteria, chlorophytes, eustigmatophytes and diatoms. We provide basic information on the techniques and tools available for each model group of organisms, we outline the state-of-the-art, and we list the synthetic biology tools that have been successfully used. We specifically focus on the latest CRISPR developments, as we believe that precision editing and advanced genetic engineering tools will be pivotal to the advancement of the field. Finally, we discuss the relative strengths and weaknesses of each group of organisms and examine the challenges that need to be overcome to achieve their synthetic biology potential.


Subject(s)
Cyanobacteria , Microalgae , Cyanobacteria/genetics , Metabolic Engineering , Photosynthesis , Synthetic Biology
4.
Physiol Plant ; 173(2): 579-590, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33864400

ABSTRACT

Ethylene is a volatile hydrocarbon with a massive global market in the plastic industry. The ethylene now used for commercial applications is produced exclusively from nonrenewable petroleum sources, while competitive biotechnological production systems do not yet exist. This review focuses on the currently developed photoautotrophic bioproduction strategies that enable direct solar-driven conversion of CO2 into ethylene, based on the use of genetically engineered photosynthetic cyanobacteria expressing heterologous ethylene forming enzyme (EFE) from Pseudomonas syringae. The emphasis is on the different engineering strategies to express EFE and to direct the cellular carbon flux towards the primary metabolite 2-oxoglutarate, highlighting associated metabolic constraints, and technical considerations on cultivation strategies and conditional parameters. While the research field has progressed towards more robust strains with better production profiles, and deeper understanding of the associated metabolic limitations, it is clear that there is room for significant improvement to reach industrial relevance. At the same time, existing information and the development of synthetic biology tools for engineering cyanobacteria open new possibilities for improving the prospects for the sustainable production of renewable ethylene.


Subject(s)
Cyanobacteria , Biotechnology , Cyanobacteria/genetics , Ethylenes , Metabolic Engineering , Photosynthesis , Pseudomonas syringae
5.
Metab Eng Commun ; 12: e00163, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33552898

ABSTRACT

Cyanobacteria can be utilized as a platform for direct phototrophic conversion of CO2 to produce several types of carbon-neutral biofuels. One promising compound to be produced photobiologically in cyanobacteria is isobutene. As a volatile compound, isobutene will quickly escape the cells without building up to toxic levels in growth medium or get caught in the membranes. Unlike liquid biofuels, gaseous isobutene may be collected from the headspace and thus avoid the costly extraction of a chemical from culture medium or from cells. Here we investigate a putative synthetic pathway for isobutene production suitable for a photoautotrophic host. First, we expressed α-ketoisocaproate dioxygenase from Rattus norvegicus (RnKICD) in Escherichia coli. We discovered isobutene formation with the purified RnKICD with the rate of 104.6 â€‹± â€‹9 â€‹ng (mg protein)-1 min-1 using α-ketoisocaproate as a substrate. We further demonstrate isobutene production in the cyanobacterium Synechocystis sp. PCC 6803 by introducing the RnKICD enzyme. Synechocystis strain heterologously expressing the RnKICD produced 91 â€‹ng â€‹l-1 OD750 -1 â€‹h-1. Thus, we demonstrate a novel sustainable platform for cyanobacterial production of an important building block chemical, isobutene. These results indicate that RnKICD can be used to further optimize the synthetic isobutene pathway by protein and metabolic engineering efforts.

6.
J Phycol ; 56(2): 334-345, 2020 04.
Article in English | MEDLINE | ID: mdl-31715644

ABSTRACT

The chlorophyte microalga Lobosphaera incisa was isolated from the snowy slopes of Mt. Tateyama in Japan. This microalga stores exceptionally high amounts of the omega-6 LC-PUFA arachidonic acid in triacylglycerols, and therefore represents a potent photosynthetic source for this essential LC-PUFA. Assuming that freezing tolerance may play a role in adaptation of L. incisa to specific ecological niches, we examined the capability of L. incisa to tolerate extreme sub-zero temperatures. We report here, that the vegetative cells of L. incisa survived freezing at -20°C and -80°C (over 1 month), without cryoprotective agents or prior treatments. Cells successfully recovered upon thawing and proliferated under optimal growth conditions (25°C). However, cells frozen at -80°C showed better recovery and lower cellular ROS generation upon thawing, compared to those preserved at -20°C. Photosynthetic yield of PSII, estimated by Fv /Fm , temporarily decreased at day 1 post freezing and resumed to the original level at day 3. Interestingly, the thawed algal cultures produced a higher level of chlorophylls, exceeding the control culture. The polar metabolome of the vegetative cells comprised a range of compatible solutes, dominated by glutamate, sucrose, and proline. We posit that the presence of endogenous cryoprotectants, a rigid multilayer cell wall, the high LC-PUFA content in membrane lipids, and putative cold-responsive proteins may contribute to the retention of functionality upon recovery from the frozen state, and therefore for the survival under cryospheric conditions. From the applied perspective, this beneficial property holds promise for the cryopreservation of starter cultures for research and commercial purposes.


Subject(s)
Chlorophyta , Microalgae , Arachidonic Acid , Freezing , Japan
7.
Plant Cell Physiol ; 60(6): 1205-1223, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30668793

ABSTRACT

Lobosphaera incisa is a green microalga that accumulates high levels of the valuable omega-6 long-chain polyunsaturated fatty acids (LC-PUFA) arachidonic acid (ARA, 20:4n-6) in triacylglycerols (TAG) under nitrogen (N) starvation. LC-PUFA accumulation is a rare trait in photosynthetic microalgae with insufficiently understood physiological significance. In this study, RNAi was attempted, for the first time in L. incisa, to produce knockdown lines for the Δ5 desaturase gene. Two lines, termed modified lines, which were isolated during screening for transgenic events, demonstrated alterations in their LC-PUFA profile, ARA-biosynthesis gene expression and lipid class distribution. In line M5-78, which appeared to carry a mutation in the Δ6 elongase gene, LC-PUFA were substituted by 18:3n-6 in all glycerolipids. Line M2-35, for which the exact genetic background has not been established, displayed a dramatic reduction in 20:4n-6, concomitant with an augmented proportion of 18:1n-9, in particular in the extraplastidial membrane lipids and TAG. The physiological responses of the modified lines to stressful conditions were compared with the wild type and the Δ5 desaturase mutant. In the N-replete cells of modified lines, the frequency of lipid droplets was reduced, while a number of starch grains increased, suggesting altered partitioning of assimilated carbon into reserve products. Furthermore, both lines exhibited reduced ability to accumulate TAG under N deprivation and recover from N starvation. Both lines demonstrated lower photosynthetic pigment contents, impairments in photosynthesis under a range of stressful conditions, and less efficient functioning of photoprotection under optimal conditions. Possible implications of fatty acids modifications in the stress response of L. incisa are addressed.


Subject(s)
Chlorophyta/physiology , Fatty Acids, Unsaturated/physiology , Arachidonic Acid/metabolism , Chlorophyta/metabolism , Chlorophyta/ultrastructure , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Fatty Acids, Omega-6/metabolism , Fatty Acids, Omega-6/physiology , Fatty Acids, Unsaturated/metabolism , Gene Expression Regulation, Plant , Microscopy, Electron, Transmission , Nitrogen/deficiency , Photosynthesis , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...