Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 15(14): 8871-83, 2007 Jul 09.
Article in English | MEDLINE | ID: mdl-19547225

ABSTRACT

We explain the origin of the electric and particular the magnetic polarizabiltiy of metamaterials employing a fully electromagnetic plasmonic picture. As example we study an U-shaped split-ring resonator based metamaterial at optical frequencies. The relevance of the split-ring resonator orientation relative to the illuminating field for obtaining a strong magnetic response is outlined. We reveal higher-order magnetic resonances and explain their origin on the basis of higher-order plasmonic eigenmodes caused by an appropriate current flow in the split-ring resonator. Finally, the conditions required for obtaining a negative index at optical frequencies in a metamaterial consisting of split-ring resonators and wires are investigated.

2.
Opt Express ; 14(19): 8827-36, 2006 Sep 18.
Article in English | MEDLINE | ID: mdl-19529264

ABSTRACT

We numerically study the spectral response of 'U'-shaped split-ring-resonators at normal incidence with respect to the resonator plane. Based on the evaluation of the near-field patterns of the resonances and their geometry-dependent spectral positions, we obtain a comprehensive and consistent picture of their origin. We conclude that all resonances can be understood as plasmonic resonances of increasing order of the entire structure. In particular, for an electrical field polarized parallel to the gap the so-called LC-resonance corresponds to the fundamental plasmonic mode and, contrary to earlier interpretations, the electrical resonance is a second order plasmon mode of the entire structure. The presence of further higher order modes is discussed.

3.
Opt Lett ; 30(11): 1384-6, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15981541

ABSTRACT

We present phase-resolved pulse propagation measurements that allow us to fully describe the transition between several light-matter interaction regimes. The complete range from linear excitation to the breakdown of the photonic bandgap on to self-induced transmission and self-phase modulation is studied on a high-quality multiple-quantum-well Bragg structure. An improved fast-scanning cross-correlation frequency-resolved optical gating setup is applied to retrieve the pulse phase with an excellent signal-to-noise ratio. Calculations using the semiconductor Maxwell-Bloch equations show qualitative agreement with the experimental findings.

4.
Nat Mater ; 2(2): 122-6, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12612698

ABSTRACT

In applications as diverse as fibre-optic communications and time-domain or terahertz spectroscopy, researchers are keen on ultrafast optoelectronic transducers that can be tailored to specific needs. The molecular beam epitaxy of photoconductors composed of equidistant layers of self-assembled ErAs-islands in a III-V semiconductor matrix, which act as efficient non-radiative carrier capture sites, enables this flexibility. Here, photocurrent autocorrelation techniques are applied to metal-semiconductor-metal photodetectors patterned on ErAs:GaAs superlattices. The experiments demonstrate that the electrical response speed can be conveniently tuned over at least two orders of magnitude starting from 190 fs by increasing the thickness of the GaAs spacer separating adjacent ErAs layers. The same concept is applied to the narrower bandgap InGaAs matrix. We demonstrate an electron lifetime of approximately 1 ps for this material. This brings closer the prospect of implementing terahertz technology at the important optical communication wavelengths of 1.3 and 1.55 microm.


Subject(s)
Nanotechnology/methods , Semiconductors , Photochemistry/methods
5.
Opt Express ; 10(21): 1161-6, 2002 Oct 21.
Article in English | MEDLINE | ID: mdl-19451975

ABSTRACT

We propose a generally applicable velocity matching method for THz-pulse generation by optical rectification in the range below the phonon frequency of the nonlinear material. Velocity matching is based on pulse front tilting of the ultrashort excitation pulse and is able to produce a large area THz beam. Tuning of the THz radiation by changing the tilt angle is experimentally demonstrated for a narrow line in the range between 0.8- 0.97 times the phonon frequency. According to model calculations broadband THz radiation can be generated at lower frequencies. Advantages of the new velocity matching technique in comparison to the electro-optic Cherenkov effect and non-collinear beam mixing are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...