Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 369
Filter
1.
Mult Scler J Exp Transl Clin ; 10(2): 20552173241247182, 2024.
Article in English | MEDLINE | ID: mdl-38800132

ABSTRACT

Background: The use of non-specific immunosuppressants (NSIS) to treat multiple sclerosis (MS) remains prevalent in certain geographies despite safety concerns, likely due to resource limitations. Objective: To use MSBase registry data to compare real-world outcomes in adults with relapsing-remitting MS (RRMS) treated with dimethyl fumarate (DMF) or NSIS (azathioprine, cyclosporine, cyclophosphamide, methotrexate, mitoxantrone or mycophenolate mofetil) between January 1, 2014 and April 1, 2022. Methods: Treatment outcomes were compared using inverse probability of treatment weighting (IPTW) Cox regression. Outcomes were annualized relapse rates (ARRs), time to discontinuation, time to first relapse (TTFR) and time to 24-week confirmed disability progression (CDP) or 24-week confirmed disability improvement (CDI; in patients with baseline Expanded Disability Status Scale [EDSS] score ≥2). Results: After IPTW, ARR was similar for DMF (0.13) and NSIS (0.16; p = 0.29). There was no difference in TTFR between cohorts (hazard ratio [HR]: 0.98; p = 0.84). The DMF cohort experienced longer times to discontinuation (HR: 0.75; p = 0.001) and CDP (HR: 0.53; p = 0.001), and shorter time to CDI (HR: 1.99; p < 0.008), versus the NSIS cohort. Conclusion: This analysis supports the use of DMF to treat patients with relapsing forms of MS, and may have implications for MS practices in countries where NSIS are commonly used to treat RRMS.

2.
J Neurol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758279

ABSTRACT

BACKGROUND: A subgroup of people with multiple sclerosis (pwMS) will develop severe disability. The pathophysiology underlying severe MS is unknown. The comprehensive assessment of severely affected MS (CASA-MS) was a case-controlled study that compared severely disabled in skilled nursing (SD/SN) (EDSS ≥ 7.0) to less-disabled (EDSS 3.0-6.5) community dwelling (CD) progressive pwMS, matched on age-, sex- and disease-duration (DDM). OBJECTIVES: To identify neuroimaging and molecular biomarker characteristics that distinguish SD/SN from DDM-CD progressive pwMS. METHODS: This study was carried at SN facility and at a tertiary MS center. The study collected clinical, molecular (serum neurofilament light chain, sNfL and glial acidic fibrillary protein, sGFAP) and MRI quantitative lesion-, brain volume-, and tissue integrity-derived measures. Statistical analyses were controlled for multiple comparisons. RESULTS: 42 SD/SN and 42 DDM-CD were enrolled. SD/SN pwMS showed significantly lower cortical volume (CV) (p < 0.001, d = 1.375) and thalamic volume (p < 0.001, d = 0.972) compared to DDM-CD pwMS. In a logistic stepwise regression model, the SD/SN pwMS were best differentiated from the DDM-CD pwMS by lower CV (p < 0.001) as the only significant predictor, with the accuracy of 82.3%. No significant differences between the two groups were observed for medulla oblongata volume, a proxy for spinal cord atrophy and white matter lesion burden, while there was a statistical trend for numerically higher sGFAP in SD/SN pwMS. CONCLUSIONS: The CASA-MS study showed significantly more gray matter atrophy in severe compared to less-severe progressive MS.

3.
Ther Adv Neurol Disord ; 17: 17562864241239101, 2024.
Article in English | MEDLINE | ID: mdl-38560407

ABSTRACT

Background: In REFLEX, subcutaneous interferon beta-1a (sc IFN ß-1a) delayed the onset of multiple sclerosis (MS) in patients with a first clinical demyelinating event (FCDE). Objectives: This post hoc analysis aimed to determine whether baseline serum neurofilament light (sNfL) chain can predict conversion to MS and whether correlations exist between baseline sNfL and magnetic resonance imaging (MRI) metrics. Methods: sNfL was measured for 494 patients who received sc IFN ß-1a 44 µg once weekly (qw; n = 168), three times weekly (tiw; n = 161), or placebo (n = 165) over 24 months. Median baseline sNfL (26.1 pg/mL) was used to define high/low sNfL subgroups. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox's proportional hazard model to determine factors influencing the risk of conversion to MS. Kaplan-Meier estimates calculated median time-to-conversion to MS (McDonald 2005 criteria) or clinically definite MS (CDMS; Poser criteria). Correlations between sNfL and MRI findings were assessed using Spearman's rank correlation coefficient (r). Results: Multivariable models indicated that high baseline sNfL was associated with the likelihood of converting to MS and inversely to time-to-conversion (HR = 1.3, 95% CI: 1.03-1.64; p = 0.024). Significant additional factors affecting conversion to McDonald MS were on-study treatment (sc IFN ß-1a/placebo; qw: HR = 0.59, 95% CI: 0.46-0.76; tiw: HR = 0.45, 95% CI: 0.34-0.59), classification of FCDE (monofocal/multifocal; HR = 0.69, 95% CI: 0.55-0.85), and most baseline imaging findings (T2 and T1 gadolinium-enhancing [Gd+] lesions; HR = 1.02, 95% CI: 1.01-1.03 and HR = 1.07, 95% CI: 1.03-1.11); all p ⩽ 0.001. Conversion to CDMS showed similar results. At month 24, sNfL was strongly correlated with a mean number of combined unique active (r = 0.71), new T2 (r = 0.72), and new T1 Gd+ (r = 0.60) lesions; weak correlations were observed between sNfL and clinical outcomes for all treatment groups. Conclusion: Higher baseline sNfL was associated with an increased risk of MS conversion, a risk that was mitigated by treatment with sc IFN ß-1a tiw. Trial registration: ClinicalTrials.gov identifier: NCT00404352. Date registered: 28 November 2006.

4.
Article in English | MEDLINE | ID: mdl-38569872

ABSTRACT

BACKGROUND: It remains unclear whether routine cerebrospinal fluid (CSF) parameters can serve as predictors of multiple sclerosis (MS) disease course. METHODS: This large-scale cohort study included persons with MS with CSF data documented in the MSBase registry. CSF parameters to predict time to reach confirmed Expanded Disability Status Scale (EDSS) scores 4, 6 and 7 and annualised relapse rate in the first 2 years after diagnosis (ARR2) were assessed using (cox) regression analysis. RESULTS: In total, 11 245 participants were included of which 93.7% (n=10 533) were persons with relapsing-remitting MS (RRMS). In RRMS, the presence of CSF oligoclonal bands (OCBs) was associated with shorter time to disability milestones EDSS 4 (adjusted HR=1.272 (95% CI, 1.089 to 1.485), p=0.002), EDSS 6 (HR=1.314 (95% CI, 1.062 to 1.626), p=0.012) and EDSS 7 (HR=1.686 (95% CI, 1.111 to 2.558), p=0.014). On the other hand, the presence of CSF pleocytosis (≥5 cells/µL) increased time to moderate disability (EDSS 4) in RRMS (HR=0.774 (95% CI, 0.632 to 0.948), p=0.013). None of the CSF variables were associated with time to disability milestones in persons with primary progressive MS (PPMS). The presence of CSF pleocytosis increased ARR2 in RRMS (adjusted R2=0.036, p=0.015). CONCLUSIONS: In RRMS, the presence of CSF OCBs predicts shorter time to disability milestones, whereas CSF pleocytosis could be protective. This could however not be found in PPMS. CSF pleocytosis is associated with short-term inflammatory disease activity in RRMS. CSF analysis provides prognostic information which could aid in clinical and therapeutic decision-making.

5.
Brain Behav ; 14(5): e3498, 2024 May.
Article in English | MEDLINE | ID: mdl-38688877

ABSTRACT

BACKGROUND: In patients with relapsing remitting multiple sclerosis (RRMS) on low-efficacy disease modifying therapies (DMT), the optimal strategy on how to escalate treatment once needed, remains unknown. METHODS: We studied RRMS patients on low-efficacy DMTs listed in the Swiss National Treatment Registry, who underwent escalation to either medium- or high-efficacy DMTs. Propensity score-based matching was applied using 12 clinically relevant variables. Both groups were also separately matched with control subjects who did not escalate therapy. Time to relapse and to disability worsening were evaluated using Cox proportional hazard models. RESULTS: Of 1037 eligible patients, we 1:1 matched 450 MS patients who switched from low-efficacy to medium-efficacy (n = 225; 76.0% females, aged 42.4 ± 9.9 years [mean ± SD], median EDSS 3.0 [IQR 2-4]) or high-efficacy DMTs (n = 225; 72.4% females, aged 42.2 ± 10.6 years, median EDSS 3.0 [IQR 2-4]). Escalation to high-efficacy DMTs was associated with lower hazards of relapses than medium-efficacy DMTs (HR = 0.67, 95% CI 0.47-0.95, p = .027) or control subjects (HR = 0.61, 95% CI 0.44-0.84, p = .003). By contrast, escalation from low to medium-efficacy DMTs did not alter the hazard for relapses when compared to controls (i.e. patients on low-efficacy DMT who did not escalate DMT during follow-up) CONCLUSION: Our nationwide registry analysis suggests that, once escalation from a low-efficacy DMT is indicated, switching directly to a high-efficacy treatment is superior to a stepwise escalation starting with a moderate-efficacy treatment.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Humans , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Female , Adult , Male , Middle Aged , Registries , Recurrence , Treatment Outcome , Switzerland
6.
Sci Rep ; 14(1): 9848, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684744

ABSTRACT

Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.


Subject(s)
Multiple Sclerosis , Humans , Female , Adult , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Diffusion Magnetic Resonance Imaging/methods , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Biomarkers , Neurites/pathology , Inflammation/pathology , Inflammation/diagnostic imaging
7.
Nat Rev Neurol ; 20(5): 269-287, 2024 05.
Article in English | MEDLINE | ID: mdl-38609644

ABSTRACT

Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.


Subject(s)
Biomarkers , Intermediate Filaments , Nervous System Diseases , Neurofilament Proteins , Humans , Biomarkers/metabolism , Biomarkers/blood , Nervous System Diseases/diagnosis , Nervous System Diseases/metabolism , Nervous System Diseases/blood , Neurofilament Proteins/blood , Intermediate Filaments/metabolism
8.
J Neurol ; 271(6): 3131-3141, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38625399

ABSTRACT

BACKGROUND: Increasingly, patients, clinicians, and regulators call for more evidence on the impact of innovative medicines on quality of life (QoL). We assessed the effects of disease-modifying therapies (DMTs) on QoL in people with multiple sclerosis (PwMS). METHODS: Randomized trials assessing approved DMTs in PwMS with results for at least one outcome referred to as "quality of life" were searched in PubMed and ClinicalTrials.gov. RESULTS: We identified 38 trials published between 1999 and 2023 with a median of 531 participants (interquartile range (IQR) 202 to 941; total 23,225). The evaluated DMTs were mostly interferon-beta (n = 10; 26%), fingolimod (n = 7; 18%), natalizumab (n = 5; 13%), and glatiramer acetate (n = 4; 11%). The 38 trials used 18 different QoL instruments, with up to 11 QoL subscale measures per trial (median 2; IQR 1-3). QoL was never the single primary outcome. We identified quantitative QoL results in 24 trials (63%), and narrative statements in 15 trials (39%). In 16 trials (42%), at least one of the multiple QoL results was statistically significant. The effect sizes of the significant quantitative QoL results were large (median Cohen's d 1.02; IQR 0.3-1.7; median Hedges' g 1.01; IQR 0.3-1.69) and ranged between d 0.14 and 2.91. CONCLUSIONS: Certain DMTs have the potential to positively impact QoL of PwMS, and the assessment and reporting of QoL is suboptimal with a multitude of diverse instruments being used. There is an urgent need that design and reporting of clinical trials reflect the critical importance of QoL for PwMS.


Subject(s)
Multiple Sclerosis , Quality of Life , Humans , Multiple Sclerosis/drug therapy , Multiple Sclerosis/psychology , Randomized Controlled Trials as Topic , Outcome Assessment, Health Care , Immunologic Factors/therapeutic use
9.
Med ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38554710

ABSTRACT

BACKGROUND: Progressive multiple sclerosis (MS) is characterized by compartmentalized smoldering neuroinflammation caused by the proliferation of immune cells residing in the central nervous system (CNS), including B cells. Although inflammatory activity can be prevented by immunomodulatory therapies during early disease, such therapies typically fail to halt disease progression. CD19 chimeric antigen receptor (CAR)-T cell therapies have revolutionized the field of hematologic malignancies. Although generally considered efficacious, serious adverse events associated with CAR-T cell therapies such as immune effector cell-associated neurotoxicity syndrome (ICANS) have been observed. Successful use of CD19 CAR-T cells in rheumatic diseases like systemic lupus erythematosus and neuroimmunological diseases like myasthenia gravis have recently been observed, suggesting possible application in other autoimmune diseases. METHODS: Here, we report the first individual treatment with a fully human CD19 CAR-T cell therapy (KYV-101) in two patients with progressive MS. FINDINGS: CD19 CAR-T cell administration resulted in acceptable safety profiles for both patients. No ICANS was observed despite detection of CD19 CAR-T cells in the cerebrospinal fluid. In case 1, intrathecal antibody production in the cerebrospinal fluid decreased notably after CAR-T cell infusion and was sustained through day 64. CONCLUSIONS: CD19 CAR-T cell administration in progressive MS resulted in an acceptable safety profile. CAR-T cell presence and expansion were observed in the cerebrospinal fluid without clinical signs of neurotoxicity, which, along with intrathecal antibody reduction, indicates expansion-dependent effects of CAR-T cells on CD19+ target cells in the CNS. Larger clinical studies assessing CD19 CAR-T cells in MS are warranted. FUNDING: Both individual treatments as well the generated data were not based on external funding.

10.
Children (Basel) ; 11(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38539395

ABSTRACT

(1) Introduction: This pilot study aimed to analyze neurofilament light chain levels in cerebrospinal fluid (cNfL) in a cohort of children with different acute nontraumatic neurological conditions. (2) Methods: This prospective observational cohort study consisted of 35 children aged 3 months to 17 years and was performed from November 2017 to December 2019. Patients' clinical data were reviewed, and patients were assigned to the following groups: n = 10 (28.6%) meningitis, 5 (14.3%) Bell's palsy, 7 (20.0%) febrile non-CNS infection, 3 (8.6%) complex febrile seizure, 4 (11.4%) idiopathic intracranial hypertension, and 6 (17.1%) others. cNfL levels were measured using a sensitive single-molecule array assay. (3) Results: The cNfL levels [median (range)] in children with meningitis were 120.5 pg/mL (58.1-205.4), in Bell's palsy 88.6 pg/mL (48.8-144.5), in febrile non-CNS infection 103.9 pg/mL (60.1-210.8), in complex febrile seizure 56 pg/mL (53.2-58.3), and in idiopathic intracranial hypertension 97.1 pg/mL (60.1-124.6). Within the meningitis group, children with Lyme neuroborreliosis (LNB) had significantly higher cNfL concentrations (median 147.9 pg/mL; range 87.8-205.4 pg/mL) than children with enterovirus meningitis (72.5 pg/mL; 58.1-95.6 pg/mL; p = 0.048) and non-significantly higher cNfL levels when compared to Bell's palsy (88.6 pg/mL; 48.8-144.5 pg/mL; p = 0.082). There was no correlation between cNfL levels and age. (4) Conclusions: Although the number of patients in this pilot study cohort is limited, higher cNfL levels in children with LNB compared to those with viral meningitis (significant) and Bell's palsy (trend) may indicate the potential of cNfL as a biomarker in the differential diagnosis of pediatric meningitis and facial palsy.

11.
Mult Scler ; 30(4-5): 558-570, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436271

ABSTRACT

BACKGROUND: Evobrutinib - an oral, central nervous system (CNS)-penetrant, and highly selective Bruton's tyrosine kinase inhibitor - has shown efficacy in a 48-week, double-blind, Phase II trial in patients with relapsing MS. OBJECTIVE: Report results of the Phase II open-label extension (OLE; up to week 192 from randomisation) and a cerebrospinal fluid (CSF) sub-study. METHODS: In the 48-week double-blind period (DBP), patients received evobrutinib 25 mg once-daily, 75 mg once-daily, 75 mg twice-daily or placebo (switched to evobrutinib 25 mg once-daily after week 24). Patients could then enter the OLE, receiving evobrutinib 75 mg once-daily (mean (± standard deviation (SD)) duration = 50.6 weeks (±6.0)) before switching to 75 mg twice-daily. RESULTS: Of 164 evobrutinib-treated patients who entered the OLE, 128 (78.0%) completed ⩾192 weeks of treatment. Patients receiving DBP evobrutinib 75 mg twice-daily: annualised relapse rate at week 48 (0.11 (95% confidence interval (CI) = 0.04-0.25)) was maintained with the OLE twice-daily dose up to week 192 (0.11 (0.05-0.22)); Expanded Disability Status Scale score remained stable; serum neurofilament light chain fell to levels like a non-MS population (Z-scores); T1 gadolinium-enhancing lesion numbers remained low. No new safety signals were identified. In the OLE, evobrutinib was detected in the CSF of all sub-study patients. CONCLUSION: Long-term evobrutinib treatment was well tolerated and associated with a sustained low level of disease activity. Evobrutinib was present in CSF at concentrations similar to plasma.


Subject(s)
Multiple Sclerosis , Piperidines , Pyrimidines , Humans , Multiple Sclerosis/drug therapy , Follow-Up Studies , Recurrence , Double-Blind Method , Treatment Outcome
12.
Diabetes Care ; 47(6): 986-994, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38502878

ABSTRACT

OBJECTIVE: To investigate the longitudinal development of neurofilament light chain (NfL) levels in type 2 diabetes with and without diabetic polyneuropathy (+/-DPN) and to explore the predictive potential of NfL as a biomarker for DPN. RESEARCH DESIGN AND METHODS: We performed retrospective longitudinal case-control analysis of data from 178 participants of the Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen-Detected Diabetes in Primary Care-Denmark (ADDITION-Denmark) cohort of people with screen-detected type 2 diabetes. Biobank samples acquired at the ADDITION-Denmark 5- and 10-year follow-ups were analyzed for serum NfL (s-NfL) using single-molecule array, and the results were compared with established reference material to obtain NfL z-scores. DPN was diagnosed according to Toronto criteria for confirmed DPN at the 10-year follow-up. RESULTS: s-NfL increased over time in +DPN (N = 39) and -DPN participants (N = 139) at levels above normal age-induced s-NfL increase. Longitudinal s-NfL change was greater in +DPN than in -DPN participants (17.4% [95% CI 4.3; 32.2] or 0.31 SD [95% CI 0.03; 0.60] higher s-NfL or NfL z-score increase in +DPN compared with -DPN). s-NfL at the 5-year follow-up was positively associated with nerve conduction studies at the 10-year follow-up (P = 0.02 to <0.001), but not with DPN risk. Areas under the curve (AUCs) for s-NfL were not inferior to AUCs for the Michigan Neuropathy Screening Instrument questionnaire score or vibration detection thresholds. Higher yearly s-NfL increase was associated with higher DPN risk (odds ratio 1.36 [95% CI 1.08; 1.71] per 1 ng/L/year). CONCLUSIONS: Our findings suggest that preceding s-NfL trajectories differ slightly between those with and without DPN and imply a possible biomarker value of s-NfL trajectories in DPN.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Neurofilament Proteins , Humans , Diabetic Neuropathies/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Neurofilament Proteins/blood , Male , Female , Middle Aged , Retrospective Studies , Longitudinal Studies , Aged , Case-Control Studies , Biomarkers/blood
13.
Res Synth Methods ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501273

ABSTRACT

Some patients benefit from a treatment while others may do so less or do not benefit at all. We have previously developed a two-stage network meta-regression prediction model that synthesized randomized trials and evaluates how treatment effects vary across patient characteristics. In this article, we extended this model to combine different sources of types in different formats: aggregate data (AD) and individual participant data (IPD) from randomized and non-randomized evidence. In the first stage, a prognostic model is developed to predict the baseline risk of the outcome using a large cohort study. In the second stage, we recalibrated this prognostic model to improve our predictions for patients enrolled in randomized trials. In the third stage, we used the baseline risk as effect modifier in a network meta-regression model combining AD, IPD randomized clinical trial to estimate heterogeneous treatment effects. We illustrated the approach in the re-analysis of a network of studies comparing three drugs for relapsing-remitting multiple sclerosis. Several patient characteristics influence the baseline risk of relapse, which in turn modifies the effect of the drugs. The proposed model makes personalized predictions for health outcomes under several treatment options and encompasses all relevant randomized and non-randomized evidence.

14.
Sci Transl Med ; 16(737): eadi0295, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446903

ABSTRACT

Anti-CD20 therapy to deplete B cells is highly efficacious in preventing new white matter lesions in patients with relapsing-remitting multiple sclerosis (RRMS), but its protective capacity against gray matter injury and axonal damage is unclear. In a passive experimental autoimmune encephalomyelitis (EAE) model whereby TH17 cells promote brain leptomeningeal immune cell aggregates, we found that anti-CD20 treatment effectively spared myelin content and prevented myeloid cell activation, oxidative damage, and mitochondrial stress in the subpial gray matter. Anti-CD20 treatment increased B cell survival factor (BAFF) in the serum, cerebrospinal fluid, and leptomeninges of mice with EAE. Although anti-CD20 prevented gray matter demyelination, axonal loss, and neuronal atrophy, co-treatment with anti-BAFF abrogated these benefits. Consistent with the murine studies, we observed that elevated BAFF concentrations after anti-CD20 treatment in patients with RRMS were associated with better clinical outcomes. Moreover, BAFF promoted survival of human neurons in vitro. Together, our data demonstrate that BAFF exerts beneficial functions in MS and EAE in the context of anti-CD20 treatment.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis, Relapsing-Remitting , Humans , Animals , Mice , Neuroprotection , Brain , Gray Matter , Antigen Presentation , Atrophy , Encephalomyelitis, Autoimmune, Experimental/drug therapy
15.
Neurol Neuroimmunol Neuroinflamm ; 11(2): e200212, 2024 03.
Article in English | MEDLINE | ID: mdl-38354323

ABSTRACT

BACKGROUND AND OBJECTIVES: Histopathologic studies have identified immunoglobulin (Ig) deposition and complement activation as contributors of CNS tissue damage in multiple sclerosis (MS). Intrathecal IgM synthesis is associated with higher MS disease activity and severity, and IgM is the strongest complement-activating immunoglobulin. In this study, we investigated whether complement components (CCs) and complement activation products (CAPs) are increased in persons with MS, especially in those with an intrathecal IgM synthesis, and whether they are associated with disease severity and progression. METHODS: CC and CAP levels were quantified in plasma and CSF of 112 patients with clinically isolated syndrome (CIS), 127 patients with MS (90 relapsing-remitting, 14 primary progressive, and 23 secondary progressive), 31 inflammatory neurologic disease, and 44 symptomatic controls from the Basel CSF databank study. Patients with CIS/MS were followed in the Swiss MS cohort study (median 6.3 years). Levels of CC/CAP between diagnosis groups were compared; in CIS/MS, associations of CC/CAP levels with intrathecal Ig synthesis, baseline Expanded Disability Status Scale (EDSS) scores, MS Severity Score (MSSS), and neurofilament light chain (NfL) levels were investigated by linear regression, adjusted for age, sex, and albumin quotient. RESULTS: CSF (but not plasma) levels of C3a, C4a, Ba, and Bb were increased in patients with CIS/MS, being most pronounced in those with an additional intrathecal IgM production. In CIS, doubling of C3a and C4a in CSF was associated with 0.31 (CI 0.06-0.56; p = 0.016) and 0.32 (0.02-0.62; p = 0.041) increased EDSS scores at lumbar puncture. Similarly, doubling of C3a and Ba in CIS/MS was associated with 0.61 (0.19-1.03; p < 0.01) and 0.74 (0.18-1.31; p = 0.016) increased future MSSS. In CIS/MS, CSF levels of C3a, C4a, Ba, and Bb were associated with increased CSF NfL levels, e.g., doubling of C3a was associated with an increase of 58% (Est. 1.58; CI 1.37-1.81; p < 0.0001). DISCUSSION: CNS-compartmentalized activation of the classical and alternative pathways of complement is increased in CIS/MS and associated with the presence of an intrathecal IgM production. Increased complement activation within the CSF correlates with EDSS, future MSSS, and NfL levels, supporting the concept that complement activation contributes to MS pathology and disease progression. Complement inhibition should be explored as therapeutic target to attenuate disease severity and progression in MS.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Cohort Studies , Patient Acuity , Complement Activation , Immunoglobulin M
16.
J Sleep Res ; : e14164, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351662

ABSTRACT

Obstructive sleep apnea is associated with cognitive impairment and increased risk for neurodegenerative diseases. Obstructive sleep apnea treatment with positive airway pressure therapy helps to improve cognitive symptoms and reduces long-term dementia risk. To test whether these treatment effects are due to a reduction in neuronal damage, we examined longitudinal changes in the neurodegenerative serum neurofilament light chain and cognitive performance of patients with obstructive sleep apnea. In this study, 17 patients with obstructive sleep apnea completed baseline and follow-up (9 month after starting PAP treatment) investigation of sleep, daytime symptoms, cognitive testing and serum neurofilament light chain measurements. Depending on treatment adherence and efficacy, participants were assigned either to the effective treatment (n = 10) or non-effective treatment group (n = 7). As results at baseline lower mean oxygen saturation during sleep was associated with higher serum neurofilament light chain. Patients in the non-effective treatment group showed a significant increase of age-adjusted percentile of serum neurofilament light chain levels at follow-up, whereas serum neurofilament light chain values remained constant in the effective treatment group. At a functional level, effective treatment leads to an improvement in processing speed, which was not the case in the non-effective treatment group. Longitudinal changes of age-adjusted serum neurofilament light chain levels were associated with changes in cognitive performance. To conclude, this longitudinal observational study showed that effective obstructive sleep apnea treatment positively affects the amount of neuronal damage as well as working memory performance. As cognitive symptoms might not only be attributed to obstructive sleep apnea-related sleep deficiency, but also neurodegeneration, our results underline the importance of treatment adherence and efficacy for the prevention of neuronal damage and cognitive consequences.

17.
EBioMedicine ; 101: 104970, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354532

ABSTRACT

Neurofilament light chain (NfL) is a long-awaited blood biomarker that can provide clinically useful information about prognosis and therapeutic efficacy in multiple sclerosis (MS). There is now substantial evidence for this biomarker to be used alongside magnetic resonance imaging (MRI) and clinical measures of disease progression as a decision-making tool for the management of patients with MS. Serum NfL (sNfL) has certain advantages over traditional measures of MS disease progression such as MRI because it is relatively noninvasive, inexpensive, and can be repeated frequently to monitor activity and treatment efficacy. sNfL levels can be monitored regularly in patients with MS to determine change from baseline and predict subclinical disease activity, relapse risk, and the development of gadolinium-enhancing (Gd+) lesions. sNfL does not replace MRI, which provides information related to spatial localisation and lesion stage. Laboratory platforms are starting to be made available for clinical application of sNfL in several countries. Further work is needed to resolve issues around comparisons across testing platforms (absolute values) and normalisation (reference ranges) in order to guide interpretation of the results.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Intermediate Filaments , Biomarkers , Prognosis , Disease Progression , Neurofilament Proteins
19.
Mult Scler ; 30(4-5): 463-478, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38253528

ABSTRACT

BACKGROUND: Pragmatic trials are increasingly recognized for providing real-world evidence on treatment choices. OBJECTIVE: The objective of this study is to investigate the use and characteristics of pragmatic trials in multiple sclerosis (MS). METHODS: Systematic literature search and analysis of pragmatic trials on any intervention published up to 2022. The assessment of pragmatism with PRECIS-2 (PRagmatic Explanatory Continuum Indicator Summary-2) is performed. RESULTS: We identified 48 pragmatic trials published 1967-2022 that included a median of 82 participants (interquartile range (IQR) = 42-160) to assess typically supportive care interventions (n = 41; 85%). Only seven trials assessed drugs (15%). Only three trials (6%) included >500 participants. Trials were mostly from the United Kingdom (n = 18; 38%), Italy (n = 6; 13%), the United States and Denmark (each n = 5; 10%). Primary outcomes were diverse, for example, quality-of-life, physical functioning, or disease activity. Only 1 trial (2%) used routinely collected data for outcome ascertainment. No trial was very pragmatic in all design aspects, but 14 trials (29%) were widely pragmatic (i.e. PRECIS-2 score ⩾ 4/5 in all domains). CONCLUSION: Only few and mostly small pragmatic trials exist in MS which rarely assess drugs. Despite the widely available routine data infrastructures, very few trials utilize them. There is an urgent need to leverage the potential of this pioneering study design to provide useful randomized real-world evidence.


Subject(s)
Multiple Sclerosis , Humans , United States , Multiple Sclerosis/drug therapy , Randomized Controlled Trials as Topic , Research Design , Patient Selection , United Kingdom
20.
Neurology ; 102(1): e207768, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38165377

ABSTRACT

BACKGROUND AND OBJECTIVES: Progression independent of relapse activity (PIRA) is a crucial determinant of overall disability accumulation in multiple sclerosis (MS). Accelerated brain atrophy has been shown in patients experiencing PIRA. In this study, we assessed the relation between PIRA and neurodegenerative processes reflected by (1) longitudinal spinal cord atrophy and (2) brain paramagnetic rim lesions (PRLs). Besides, the same relationship was investigated in progressive MS (PMS). Last, we explored the value of cross-sectional brain and spinal cord volumetric measurements in predicting PIRA. METHODS: From an ongoing multicentric cohort study, we selected patients with MS with (1) availability of a susceptibility-based MRI scan and (2) regular clinical and conventional MRI follow-up in the 4 years before the susceptibility-based MRI. Comparisons in spinal cord atrophy rates (explored with linear mixed-effect models) and PRL count (explored with negative binomial regression models) were performed between: (1) relapsing-remitting (RRMS) and PMS phenotypes and (2) patients experiencing PIRA and patients without confirmed disability accumulation (CDA) during follow-up (both considering the entire cohort and the subgroup of patients with RRMS). Associations between baseline MRI volumetric measurements and time to PIRA were explored with multivariable Cox regression analyses. RESULTS: In total, 445 patients with MS (64.9% female; mean [SD] age at baseline 45.0 [11.4] years; 11.2% with PMS) were enrolled. Compared with patients with RRMS, those with PMS had accelerated cervical cord atrophy (mean difference in annual percentage volume change [MD-APC] -1.41; p = 0.004) and higher PRL load (incidence rate ratio [IRR] 1.93; p = 0.005). Increased spinal cord atrophy (MD-APC -1.39; p = 0.0008) and PRL burden (IRR 1.95; p = 0.0008) were measured in patients with PIRA compared with patients without CDA; such differences were also confirmed when restricting the analysis to patients with RRMS. Baseline volumetric measurements of the cervical cord, whole brain, and cerebral cortex significantly predicted time to PIRA (all p ≤ 0.002). DISCUSSION: Our results show that PIRA is associated with both increased spinal cord atrophy and PRL burden, and this association is evident also in patients with RRMS. These findings further point to the need to develop targeted treatment strategies for PIRA to prevent irreversible neuroaxonal loss and optimize long-term outcomes of patients with MS.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Female , Child , Male , Cohort Studies , Cross-Sectional Studies , Brain/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Chronic Disease
SELECTION OF CITATIONS
SEARCH DETAIL
...