Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 24(22): 25148-25153, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-27828453

ABSTRACT

Silicon is an ideal material for on-chip applications, however its poor acoustic properties limit its performance for important optoacoustic applications, particularly for stimulated Brillouin scattering (SBS). We theoretically show that silicon inverse opals exhibit a strongly improved acoustic performance that enhances the bulk SBS gain coefficient by more than two orders of magnitude. We also design a waveguide that incorporates silicon inverse opals and which has SBS gain values that are comparable with chalcogenide glass waveguides. This research opens new directions for opto-acoustic applications in on-chip material systems.

2.
Opt Lett ; 41(10): 2338-41, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27176997

ABSTRACT

Using full opto-acoustic numerical simulations, we demonstrate enhancement and suppression of the SBS gain in a metamaterial comprising a subwavelength cubic array of dielectric spheres suspended in a dielectric background material. We develop a general theoretical framework and present several numerical examples using technologically important materials. For As2S3 spheres in silicon, we achieve a gain enhancement of more than an order of magnitude compared to pure silicon and for GaAs spheres in silicon, full suppression is obtained. The gain for As2S3 glass can also be strongly suppressed by embedding silica spheres. The constituent terms of the gain coefficient are shown to depend in a complex way on the filling fraction. We find that electrostriction is the dominant effect behind the control of SBS in bulk media.

3.
Opt Express ; 24(1): 545-54, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26832285

ABSTRACT

We demonstrate a sensitive method for the nonlinear optical characterization of micrometer long waveguides, and apply it to typical silicon-on-insulator nanowires and to hybrid plasmonic waveguides. We demonstrate that our method can detect extremely small nonlinear phase shifts, as low as 7.5·10<(-4) rad. The high sensitivity achieved imparts an advantage when investigating the nonlinear behavior of metallic structures as their short propagation distances complicates the task for conventional methods. Our results constitute the first experimental observation of χ((3)) nonlinearities in the hybrid plasmonic platform and is important to test claims of hybrid plasmonic structures as candidates for efficient nonlinear optical devices.

4.
Sci Rep ; 5: 8983, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25757863

ABSTRACT

Nonlinear optical processes, which are of paramount importance in science and technology, involve the generation of new frequencies. This requires phase matching to avoid that light generated at different positions interferes destructively. Of the two original approaches to achieve this, one relies on birefringence in optical crystals, and is therefore limited by the dispersion of naturally occurring materials, whereas the other, quasi-phase-matching, requires direct modulation of material properties, which is not universally possible. To overcome these limitations, we propose to exploit the unique dispersion afforded by hyperbolic metamaterials, where the refractive index can be arbitrarily large. We systematically analyse the ensuing opportunities and demonstrate that hyperbolic phase matching can be achieved with a wide range of material parameters, offering access to the use of nonlinear media for which phase matching cannot be achieved by other means. With the rapid development in the fabrication of hyperbolic metamaterials, our approach is destined to bring significant advantages over conventional techniques for the phase matching of a variety of nonlinear processes.

5.
Opt Express ; 18(24): 25232-40, 2010 Nov 22.
Article in English | MEDLINE | ID: mdl-21164870

ABSTRACT

Selective filling of photonic crystal fibers with different media enables a plethora of possibilities in linear and nonlinear optics. Using two-photon direct-laser writing we demonstrate full flexibility of individual closing of holes and subsequent filling of photonic crystal fibers with highly nonlinear liquids. We experimentally demonstrate solitonic supercontinuum generation over 600 nm bandwidth using a compact femtosecond oscillator as pump source. Encapsulating our fibers at the ends we realize a compact ultrafast nonlinear optofluidic device. Our work is fundamentally important to the field of nonlinear optics as it provides a new platform for investigations of spatio-temporal nonlinear effects and underpins new applications in sensing and communications. Selective filling of different linear and nonlinear liquids, metals, gases, gain media, and liquid crystals into photonic crystal fibers will be the basis of new reconfigurable and versatile optical fiber devices with unprecedented performance. Control over both temporal and spatial dispersion as well as linear and nonlinear coupling will lead to the generation of spatial-temporal solitons, so-called optical bullets.

6.
J Microsc ; 231(2): 349-57, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18778432

ABSTRACT

The fluorescence patterns of proteins tagged with the green fluorescent protein (GFP) and its derivatives are routinely used in conjunction with confocal laser scanning microscopy to identify their sub-cellular localization in plant cells. GFP-tagged proteins localized to plasmodesmata, the intercellular junctions of plants, are often identified by single or paired punctate labelling across the cell wall. The observation of paired puncta, or 'doublets', across cell boundaries in tissues that have been transformed through biolistic bombardment is unexpected if there is no intercellular movement of the GFP-tagged protein, since bombardment usually leads to the transformation of single, isolated cells. We expressed a putative plasmodesmal protein tagged with GFP by bombarding Allium porrum epidermal cells and assessed the nature of the doublets observed at the cell boundaries. Doublets were formed when fluorescent spots were abutting a cell boundary and were only observable at certain focal planes. Fluorescence emitted from the half of a doublet lying outside the transformed cells was polarized. Optical simulations performed using finite-difference time-domain computations showed a dramatic distortion of the confocal microscope's point spread function when imaging voxels close to the plant cell wall due to refractive index differences between the wall and the cytosol. Consequently, axially and radially out-of-focus light could be detected. A model of this phenomenon suggests how a doublet may form when imaging only a single real fluorescent body in the vicinity of a plant cell wall using confocal microscopy. We suggest, therefore, that the appearance of doublets across cell boundaries is insufficient evidence for plasmodesmal localization due to the effects of the cell wall on the reflection and scattering of light.


Subject(s)
Cells/chemistry , Microscopy, Confocal/methods , Onions/chemistry , Plant Proteins/analysis , Plasmodesmata/chemistry , Green Fluorescent Proteins/analysis , Recombinant Fusion Proteins/analysis
7.
Opt Express ; 15(24): 16270-8, 2007 Nov 26.
Article in English | MEDLINE | ID: mdl-19550915

ABSTRACT

An interesting feature of microstructured optical fibers (MOFs) is that their properties can be adjusted by filling or coating of the holes. Some applications require selective filling or coating, which has proved experimentally demanding. We demonstrate selective coating of MOFs with metal and use it to fabricate an in-fiber absorptive polarizer.

8.
Opt Express ; 14(7): 3007-14, 2006 Apr 03.
Article in English | MEDLINE | ID: mdl-19516440

ABSTRACT

We demonstrate the formation of stress-induced long period gratings (LPGs) in fluid-filled photonic bandgap fiber (PBGF). Based on our experimental results, simulations, and theoretical understanding of LPGs, we identify coupling to a guided LP(11)-like mode of the core and lossy LP1x-like modes of cladding microstructure for a single grating period. The periodic modal properties of PBGFs allow for coupling to the same mode at multiple wavelengths without a dispersion turning point. Simulations identify inherent differences in the modal structure of even and odd bands.

9.
Opt Express ; 14(19): 8797-811, 2006 Sep 18.
Article in English | MEDLINE | ID: mdl-19529262

ABSTRACT

Solid core photonic bandgap fibers (SC-PBGFs) consisting of an array of high index cylinders in a low index background and a low index defect core have been treated as a cylindrical analog of the planar anti-resonant reflecting optical waveguide (ARROW). We consider a limiting case of this model in which the cylinders in the SC-PBGF cladding are widely spaced apart, so that the SC-PBGF modal loss characteristics should resemble the antiresonant scattering properties of a single cylinder. We find that for glancing incidence, the single cylinder scattering resonances are Fano resonances, and these Fano resonances do in fact appear in the loss spectra of SC-PBGFs. We apply our analysis to enhance the core design of SC-PBGFs, specifically with an eye towards improving the mode confinement in the fundamental bandgap.

SELECTION OF CITATIONS
SEARCH DETAIL
...