Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37947697

ABSTRACT

The tribological performance of novel bio-based lubricating greases thickened with electrospun lignin nanostructures was investigated in a nanotribometer using a steel-steel ball-on-disc configuration. The impact of electrospun nanofibrous network morphology on friction and wear is explored in this work. Different lignin nanostructures were obtained with electrospinning using ethylcellulose or PVP as co-spinning polymers and subsequently used as thickeners in castor oil at concentrations of 10-30% wt. Friction and wear generally increased with thickener concentration. However, friction and wear decreased when using homogeneous bead-free nanofiber mats (with higher fiber diameter and lower porosity) rather than nanostructures dominated by the presence of particles or beaded fibers, which was favored by reducing the lignin:co-spinning polymer ratio.

2.
Article in English | MEDLINE | ID: mdl-32923429

ABSTRACT

Production of biofuels, bioproducts, and bioenergy requires a well-characterized, stable, and reasonably uniform biomass supply and well-established supply chains for shipping biomass from farm fields to biorefineries, while achieving year-round production targets. Preserving and stabilizing biomass feedstock during storage is a necessity for cost-effective and sustainable biofuel production. Ensiling is a common storage method used to preserve and even improve forage quality; however, the impact of ensiling on biomass physical and chemical properties that influence bioconversion processes has been variable. Our objective in this work was to determine the effects of ensiling on lignocellulosic feedstock physicochemical properties and how that influences bioconversion requirements. We observed statistically significant decreases (p < 0.05) in the content of two major structural carbohydrates (glucan and xylan) of 5 and 8%, respectively, between the ensiled and non-ensiled materials. We were unable to detect differences in sugar yields from structural carbohydrates after pretreatment and enzymatic hydrolysis of the ensiled materials compared to non-ensiled controls. Based on this work, we conclude that ensiling the corn stover did not change the bioconversion requirements compared to the control samples and incurred losses of structural carbohydrates. At the light microscopy level, ensiled corn stover exhibited little structural change or relocation of cell wall components as detected by immunocytochemistry. However, more subtle structural changes were revealed by electron microscopy, as ensiled cell walls exhibit ultrastructural characteristics such as wall delimitation intermediate between non-ensiled and dilute-acid-pretreated cell walls. These findings suggest that alternative methods of conversion, such as deacetylation and mechanical refining, could take advantage of lamellar defects and may be more effective than dilute acid or hot water pretreatment for biomass conversion of ensiled materials.

3.
Bioresour Technol ; 243: 474-480, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28689140

ABSTRACT

The reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165°C for 10min and with 1% H2SO4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80kg/hm2 and cake permeability of 15x10-15.


Subject(s)
Carbohydrates , Zea mays , Filtration , Hydrolysis , Sulfuric Acids , Xylose
4.
ChemSusChem ; 10(8): 1846-1856, 2017 04 22.
Article in English | MEDLINE | ID: mdl-28225212

ABSTRACT

The synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al2 O3 and HY zeolite.


Subject(s)
Alkanes/chemistry , Lignin/chemistry , Oxygen/chemistry , Ruthenium/chemistry , Zeolites/chemistry , Catalysis , Microscopy, Electron, Scanning Transmission , X-Ray Diffraction
5.
Biotechnol Biofuels ; 9: 213, 2016.
Article in English | MEDLINE | ID: mdl-27766117

ABSTRACT

BACKGROUND: Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/days continuous reactor. The reactor systems examined were an automated solvent extractor (ASE), steam explosion reactor (SER), ZipperClave®Reactor (ZCR), and large continuous horizontal screw reactor (LHR). To our knowledge, this is the first such study performed on pretreatment reactors across a range of reaction conditions and at different reactor scales. RESULTS: The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. The maximum total sugar yields for the ASE and LHR were [Formula: see text], while [Formula: see text] was the optimum observed in the ZipperClave. CONCLUSIONS: The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems. Additionally, using a severity factor approach to optimization was found to be inadequate compared to a multivariate optimization method. Finally, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of mechanical disruption during pretreatment to improvement of enzymatic digestibility.

6.
J Proteome Res ; 15(4): 1230-42, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26958999

ABSTRACT

We recently reported on the development of a 4-protein-based classifier (PDCD4, CGN, G3BP2, and OCIAD1) capable of predicting outcome to tamoxifen treatment in recurrent, estrogen-receptor-positive breast cancer based on high-resolution MS data. A precise and high-throughput assay to measure these proteins in a multiplexed, targeted fashion would be favorable to measure large numbers of patient samples to move these findings toward a clinical setting. By coupling immunoprecipitation to multiple reaction monitoring (MRM) MS and stable isotope dilution, we developed a high-precision assay to measure the 4-protein signature in 38 primary breast cancer whole tissue lysates (WTLs). Furthermore, we evaluated the presence and patient stratification capabilities of our signature in an independent set of 24 matched (pre- and post-therapy) sera. We compared the performance of immuno-MRM (iMRM) with direct MRM in the absence of fractionation and shotgun proteomics in combination with label-free quantification (LFQ) on both WTL and laser capture microdissected (LCM) tissues. Measurement of the 4-proteins by iMRM showed not only higher accuracy in measuring proteotypic peptides (Spearman r: 0.74 to 0.93) when compared with MRM (Spearman r: 0.0 to 0.76) but also significantly discriminated patient groups based on treatment outcome (hazard ratio [HR]: 10.96; 95% confidence interval [CI]: 4.33 to 27.76; Log-rank P < 0.001) when compared with LCM (HR: 2.85; 95% CI: 1.24 to 6.54; Log-rank P = 0.013) and WTL (HR: 1.16; 95% CI: 0.57 to 2.33; Log-rank P = 0.680) LFQ-based predictors. Serum sample analysis by iMRM confirmed the detection of the four proteins in these samples. We hereby report that iMRM outperformed regular MRM, confirmed our previous high-resolution MS results in tumor tissues, and has shown that the 4-protein signature is measurable in serum samples.


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Biomarkers, Tumor/blood , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , High-Throughput Screening Assays , Tamoxifen/therapeutic use , Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins/blood , Apoptosis Regulatory Proteins/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Carbon Isotopes , Carrier Proteins/blood , Carrier Proteins/genetics , Female , Gene Expression , Humans , Immunoprecipitation , Indicator Dilution Techniques , Membrane Proteins/blood , Membrane Proteins/genetics , Microfilament Proteins/blood , Microfilament Proteins/genetics , Neoplasm Proteins/blood , Neoplasm Proteins/genetics , Nitrogen Isotopes , Prognosis , RNA-Binding Proteins/blood , RNA-Binding Proteins/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Survival Analysis , Tandem Mass Spectrometry , Treatment Outcome
7.
Biotechnol Biofuels ; 7: 57, 2014.
Article in English | MEDLINE | ID: mdl-24713111

ABSTRACT

BACKGROUND: There is considerable interest in the conversion of lignocellulosic biomass to liquid fuels to provide substitutes for fossil fuels. Pretreatments, conducted to reduce biomass recalcitrance, usually remove at least some of the hemicellulose and/or lignin in cell walls. The hypothesis that led to this research was that reactor type could have a profound effect on the properties of pretreated materials and impact subsequent cellulose hydrolysis. RESULTS: Corn stover was dilute-acid pretreated using commercially relevant reactor types (ZipperClave(®) (ZC), Steam Gun (SG) and Horizontal Screw (HS)) under the same nominal conditions. Samples produced in the SG and HS achieved much higher cellulose digestibilities (88% and 95%, respectively), compared to the ZC sample (68%). Characterization, by chemical, physical, spectroscopic and electron microscopy methods, was used to gain an understanding of the effects causing the digestibility differences. Chemical differences were small; however, particle size differences appeared significant. Sum-frequency generation vibrational spectra indicated larger inter-fibrillar spacing or randomization of cellulose microfibrils in the HS sample. Simons' staining indicated increased cellulose accessibility for the SG and HS samples. Electron microscopy showed that the SG and HS samples were more porous and fibrillated because of mechanical grinding and explosive depressurization occurring with these two reactors. These structural changes most likely permitted increased cellulose accessibility to enzymes, enhancing saccharification. CONCLUSIONS: Dilute-acid pretreatment of corn stover using three different reactors under the same nominal conditions gave samples with very different digestibilities, although chemical differences in the pretreated substrates were small. The results of the physical and chemical analyses of the samples indicate that the explosive depressurization and mechanical grinding with these reactors increased enzyme accessibility. Pretreatment reactors using physical force to disrupt cell walls increase the effectiveness of the pretreatment process.

8.
Biotechnol Biofuels ; 7(1): 23, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24548527

ABSTRACT

BACKGROUND: Dilute acid pretreatment is a promising process technology for the deconstruction of low-lignin lignocellulosic biomass, capable of producing high yields of hemicellulosic sugars and enhancing enzymatic yields of glucose as part of a biomass-to-biofuels process. However, while it has been extensively studied, most work has historically been conducted at relatively high acid concentrations of 1 - 4% (weight/weight). Reducing the effective acid loading in pretreatment has the potential to reduce chemical costs both for pretreatment and subsequent neutralization. Additionally, if acid loadings are sufficiently low, capital requirements associated with reactor construction may be significantly reduced due to the relaxation of requirements for exotic alloys. Despite these benefits, past efforts have had difficulty obtaining high process yields at low acid loadings without supplementation of additional unit operations, such as mechanical refining. RESULTS: Recently, we optimized the dilute acid pretreatment of deacetylated corn stover at low acid loadings in a 1-ton per day horizontal pretreatment reactor. This effort included more than 25 pilot-scale pretreatment experiments executed at reactor temperatures ranging from 150 - 170°C, residence times of 10 - 20 minutes and hydrolyzer sulfuric acid concentrations between 0.15 - 0.30% (weight/weight). In addition to characterizing the process yields achieved across the reaction space, the optimization identified a pretreatment reaction condition that achieved total xylose yields from pretreatment of 73.5% ± 1.5% with greater than 97% xylan component balance closure across a series of five runs at the same condition. Feedstock reactivity at this reaction condition after bench-scale high solids enzymatic hydrolysis was 77%, prior to the inclusion of any additional conversion that may occur during subsequent fermentation. CONCLUSIONS: This study effectively characterized a range of pretreatment reaction conditions using deacetylated corn stover at low acid loadings and identified an optimum reaction condition was selected and used in a series of integrated pilot scale cellulosic ethanol production campaigns. Additionally, several issues exist to be considered in future pretreatment experiments in continuous reactor systems, including the formation of char within the reactor, as well as practical issues with feeding herbaceous feedstock into pressurized systems.

9.
Bioresour Technol ; 147: 401-408, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24001565

ABSTRACT

The effect of mechanical refining on the enzymatic digestibility of pretreated corn stover (PCS) was investigated. Low severity, dilute sulfuric acid PCS was subjected to mechanical refining using a bench-scale food processor blender, a PFI mill, a 12-inch laboratory disk refiner, and a 25 mm co-rotating twin-screw extruder. Glucose yields from enzymatic hydrolysis were improved by 10-15% after blending and disk refining, while PFI refining and twin-screw extrusion showed a glucose yield improvement of 16-20%. A pilot scale refining test using a Szego mill was performed and showed approximately 10% improvements in biomass digestibility. This suggests the possibility to scale up a mechanical refining technique to obtain similar enzymatic digestibility glucose yield enhancement as achieved by PFI milling and extrusion technologies. Proposed mechanisms of each mechanical refining technology are presented and reasons for improvements in biomass digestibility are discussed in this paper.


Subject(s)
Acids/metabolism , Zea mays/metabolism , Microscopy, Electron, Scanning , Particle Size
10.
Appl Biochem Biotechnol ; 168(2): 421-33, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22847186

ABSTRACT

Enzymatic conversion of oligomeric xylose and insoluble xylan remaining after effective pretreatment offers significant potential to improve xylan-to-xylose yields while minimizing yields of degredation products and fermentation inhibitors. In this work, a commercial enzyme cocktail is demonstrated to convert up to 70 % of xylo-oligomers found in dilute acid-pretreated hydrolyzate liquor at varying levels of dilution when supplemented with accessory enzymes targeting common side chains. Commercial enzyme cocktails are also shown to convert roughly 80 % of insoluble xylan remaining after effective high-solids, dilute acid pretreatment.


Subject(s)
Acids/chemistry , Xylans/chemistry , Zea mays/chemistry , Aspergillus niger/enzymology , Endo-1,4-beta Xylanases/metabolism , Hydrolysis , Plant Leaves/chemistry , Plant Stems/chemistry , Solubility , Xylose/chemistry
11.
Biotechnol Biofuels ; 5: 8, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22369467

ABSTRACT

BACKGROUND: Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: 1) cleavage of the xylosidic bonds, and 2) cleavage of covalently bonded acetyl ester groups. RESULTS: In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. CONCLUSIONS: Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield.

SELECTION OF CITATIONS
SEARCH DETAIL
...