Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 91(2): 424-30, 2015.
Article in English | MEDLINE | ID: mdl-25600099

ABSTRACT

The influence of trans fatty acids (TFA) on lipid profile, oxidative damage and mitochondrial function in the skin of rats exposed to ultraviolet radiation (UVR) was assessed. The first-generation offspring of female Wistar rats supplemented from pregnancy with either soybean oil (C-SO, rich in n-6 FA; control group) or hydrogenated vegetable fat (HVF, rich in TFA) were continued with the same supplements until adulthood, when half of each group was exposed to UVR for 12 weeks. The HVF group showed higher TFA cutaneous incorporation, increased protein carbonyl (PC) levels, decreased functionality of mitochondrial enzymes and antioxidant defenses of the skin. After UVR, the HVF group showed increased skin thickness and reactive species (RS) generation, with decreased skin antioxidant defenses. RS generation was positively correlated with skin thickness, wrinkles and PC levels. Once incorporated to skin, TFA make it more susceptible to developing UVR-induced disorders.


Subject(s)
Dietary Supplements , Mitochondria/drug effects , Plant Oils/administration & dosage , Skin Aging/drug effects , Skin/drug effects , Soybean Oil/administration & dosage , Animals , Antioxidants/metabolism , Catalase/metabolism , Female , Hydrogenation , Mitochondria/radiation effects , Pregnancy , Protein Carbonylation/drug effects , Protein Carbonylation/radiation effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Skin/chemistry , Skin/metabolism , Skin/radiation effects , Skin Aging/radiation effects , Superoxide Dismutase/metabolism , Ultraviolet Rays
2.
Hippocampus ; 25(5): 556-65, 2015 May.
Article in English | MEDLINE | ID: mdl-25394793

ABSTRACT

Recently, we have described the influence of dietary fatty acids (FA) on mania-like behavior of first generation animals. Here, two sequential generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy and during lactation. In adulthood, half of each group was exposed to an amphetamine (AMPH)-induced mania animal model for behavioral, biochemical and molecular assessments. FO supplementation was associated with lower reactive species (RS) generation and protein carbonyl (PC) levels and increased dopamine transporter (DAT) levels, while HVF increased RS and PC levels, thus decreasing catalase (CAT) activity and DAT levels in hippocampus after AMPH treatment. AMPH impaired short- (1 h) and long- (24 h) term memory in the HVF group. AMPH exposure was able to reduce hippocampal BDNF- mRNA expression, which was increased in FO. While HVF was related to higher trans FA (TFA) incorporation in hippocampus, FO was associated with increased percentage of n-3 polyunsaturated FA (PUFA) together with lower n-6/n-3 PUFA ratio. Interestingly, our data showed a positive correlation between brain-derived neurotrophic factor (BDNF) mRNA and short- and long-term memory (r(2) = 0.53; P = 0.000/r(2) = 0.32; P = 0.011, respectively), as well as a negative correlation between PC and DAT levels (r(2) = 0.23; P = 0.015). Our findings confirm that provision of n-3 or TFA during development over two generations is able to change the neuronal membrane lipid composition, protecting or impairing the hippocampus, respectively, thus affecting neurothrophic factor expression such as BDNF mRNA. In this context, chronic consumption of trans fats over two generations can facilitate the development of mania-like behavior, so leading to memory impairment and emotionality, which are related to neuropsychiatric conditions.


Subject(s)
Bipolar Disorder/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Prenatal Exposure Delayed Effects , RNA, Messenger/metabolism , Trans Fatty Acids/toxicity , Animals , Bipolar Disorder/psychology , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/metabolism , Female , Fish Oils/toxicity , Lactation , Male , Memory Disorders/metabolism , Pregnancy , Rats, Wistar , Recognition, Psychology/physiology , Soybean Oil/toxicity , Vegetable Products/toxicity
3.
Behav Processes ; 103: 297-305, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24468216

ABSTRACT

We investigated the influence of neonatal handling on cocaine-induced conditioned place preference (CPP), anxiety-like symptoms and oxidative status related to drug abstinence in young rats. Pups were submitted to tactile stimulation (TS) or neonatal isolation (NI10 or NI60) after birth, and then were submitted to CPP performed with cocaine. TS group did not show place preference, while unhandled (UH), NI10 and NI60 rats did. Handling was related to anxiety-like symptoms per se in UH and NI60 groups and this behavior was also observed in the cocaine-conditioned rats exposed to the same handlings. Both TS and NI10 pups treated or not with cocaine showed less anxiety-like behavior than animals submitted to other handlings. TS reduced protein carbonyl (PC) in cortex and NI60 increased PC in both striatum and hippocampus of cocaine-treated rats. Among cocaine-treated rats, both times of NI increased plasma lipoperoxidation levels, which was reduced by TS in erythrocytes. TS increased the catalase activity in brain areas, while other handlings did not change this. Both TS and NI10 increased plasma vitamin C levels. These findings indicate that neonatal handling can modify anxiety-like symptoms related to cocaine preference and abstinence, and its protective influence, especially TS, on the antioxidant system.


Subject(s)
Animals, Newborn/physiology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cocaine-Related Disorders/psychology , Oxidative Stress/physiology , Physical Stimulation , Social Isolation/psychology , Animals , Antioxidants/metabolism , Anxiety/psychology , Ascorbic Acid/blood , Ascorbic Acid/metabolism , Brain Chemistry/physiology , Catalase/metabolism , Conditioning, Operant/physiology , Erythrocytes/metabolism , Female , Handling, Psychological , Pregnancy , Protein Carbonylation/physiology , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism
4.
Pharmacol Biochem Behav ; 110: 58-65, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23769696

ABSTRACT

The current Western diet often provides considerable amounts of saturated and trans fatty acids (TFA), whose incorporation into neuronal membranes has been implicated in changes of brain neurochemical functions. Such influence has caused concerns due to precipitation of neuropsychiatric disorders, whose data are still unclear. Here we evaluated the influence of different fats on preference parameters for amphetamine (AMPH): adolescent rats were orally supplemented with soybean oil (SO, rich in n-6 FA, which was considered an isocaloric control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in saturated and trans FA) from weaning, which were born of dams supplemented with the same fat from pregnancy and lactation. AMPH preference, anxiety-like symptoms and locomotor index were evaluated in conditioned place preference (CPP), elevated plus maze (EPM) and open-field (OF), respectively, while brain oxidative status was determined in cortex, striatum and hippocampus. HVF increased AMPH-CPP and was associated with withdrawal signs, as observed by increased anxiety-like symptoms. Moreover, SO and FO were not associated with AMPH preference, but only FO-supplemented rats did not show any anxiety-like symptoms or increased locomotion. FO supplementation was related to lower oxidative damages to proteins and increased CAT activity in striatum and hippocampus, as well as increased GSH levels in blood, while HVF was related to increased oxidative status. In conclusion, our study showed the harmful influence of TFA on AMPH-CPP and drug craving symptoms, which can be related to dopaminergic neurotransmission.


Subject(s)
Amphetamine/pharmacology , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Fatty Acids, Omega-3/pharmacology , Trans Fatty Acids/pharmacology , Animals , Conditioning, Classical , Female , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...