Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 913275, 2022.
Article in English | MEDLINE | ID: mdl-36110848

ABSTRACT

Activation of CD40-signaling contributes to the initiation, progression and drug resistance of B cell lymphomas. We contributed to this knowledge by showing that constitutive CD40-signaling in B cells induces B cell hyperplasia and finally B cell lymphoma development in transgenic mice. CD40 activates, among others, the non-canonical NF-ĸB signaling, which is constitutively activated in several human B cell lymphomas and is therefore presumed to contribute to lymphopathogenesis. This prompted us to study the regulatory role of the non-canonical NF-ĸB transcription factor RelB in lymphomagenesis. To this end, we crossed mice expressing a constitutively active CD40 receptor in B cells with conditional RelB-KO mice. Ablation of RelB attenuated pre-malignant B cell expansion, and resulted in an impaired survival and activation of long-term CD40-stimulated B cells. Furthermore, we found that hyperactivation of non-canonical NF-кB signaling enhances the retention of B cells in the follicles of secondary lymphoid organs. RNA-Seq-analysis revealed that several genes involved in B-cell migration, survival, proliferation and cytokine signaling govern the transcriptional differences modulated by the ablation of RelB in long-term CD40-stimulated B cells. Inactivation of RelB did not abrogate lymphoma development. However, lymphomas occurred with a lower incidence and had a longer latency period. In summary, our data suggest that RelB, although it is not strictly required for malignant transformation, accelerates the lymphomagenesis of long-term CD40-stimulated B cells by regulating genes involved in migration, survival and cytokine signaling.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Transcription Factor RelB , Animals , B-Lymphocytes , CD40 Antigens/genetics , Cytokines , Humans , Lymphoma, B-Cell/genetics , Mice , Mice, Transgenic , NF-kappa B , Transcription Factor RelB/genetics
2.
Sci Signal ; 14(682)2021 05 11.
Article in English | MEDLINE | ID: mdl-33975980

ABSTRACT

Members of the RAF family of serine-threonine kinases are intermediates in the mitogen-activated protein kinase and extracellular signal-regulated kinase (MAPK-ERK) signaling pathway, which controls key differentiation processes in B cells. By analyzing mice with B cell-specific deletion of Raf1, Braf, or both, we showed that Raf-1 and B-Raf acted together in mediating the positive selection of pre-B and transitional B cells as well as in initiating plasma cell differentiation. However, genetic or chemical inactivation of RAFs led to increased ERK phosphorylation in mature B cells. ERK activation in the absence of Raf-1 and B-Raf was mediated by multiple RAF-independent pathways, with phosphoinositide 3-kinase (PI3K) playing an important role. Furthermore, we found that ERK phosphorylation strongly increased during the transition from activated B cells to pre-plasmablasts. This increase in ERK phosphorylation did not occur in B cells lacking both Raf-1 and B-Raf, which most likely explains the partial block of plasma cell differentiation in mice lacking both RAFs. Collectively, our data indicate that B-Raf and Raf-1 are not necessary to mediate ERK phosphorylation in naïve or activated B cells but are essential for mediating the marked increase in ERK phosphorylation during the transition from activated B cells to pre-plasmablasts.


Subject(s)
B-Lymphocytes/cytology , Extracellular Signal-Regulated MAP Kinases , Plasma Cells/cytology , Proto-Oncogene Proteins c-raf , Animals , Cell Differentiation , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice , Phosphatidylinositol 3-Kinases , Phosphorylation , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/metabolism
3.
Nat Commun ; 10(1): 1415, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926791

ABSTRACT

B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.


Subject(s)
DNA Transposable Elements/genetics , Genetic Testing/methods , Lymphoma, B-Cell/genetics , Animals , CRISPR-Cas Systems/genetics , Clone Cells , Gene Dosage , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Genes, Tumor Suppressor , Genetic Association Studies , Humans , Loss of Heterozygosity , Lymphoma, B-Cell/pathology , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, B-Cell/metabolism , Reproducibility of Results
4.
Adv Exp Med Biol ; 854: 87-93, 2016.
Article in English | MEDLINE | ID: mdl-26427398

ABSTRACT

Millions of individuals older than 50-years suffer from age-related macular degeneration (AMD). Associated with this multifactorial disease are polymorphisms of complement factor genes and a main environmental risk factor-oxidative stress. Until now the linkage between these risk factors for AMD has not been fully understood. Recent studies, integrating results on oxidative stress, complement activation, epidemiology and ocular pathology suggested the following sequence in AMD-etiology: initially, chronic oxidative stress results in modification of proteins and lipids in the posterior of the eye; these tissue alterations trigger chronic inflammation, involving the complement system; and finally, invasive immune cells facilitate pathology in the retina. Here, we summarize the results for animal studies which aim to elucidate this molecular interplay of oxidative events and tissue-specific complement activation in the eye.


Subject(s)
Complement Activation , Complement System Proteins/metabolism , Macular Degeneration/metabolism , Oxidative Stress , Animals , Complement System Proteins/genetics , Disease Models, Animal , Humans , Macular Degeneration/genetics , Mice, Knockout , Retina/metabolism , Retina/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...