Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38501936

ABSTRACT

A scintillator-based Timepix3 (TPX3) detector was developed to resolve the high-frequency modulation of a neutron beam in both spatial and temporal domains, as required for neutron spin-echo experiments. In this system, light from a scintillator is manipulated with an optical lens and is intensified using an image intensifier, making it detectable with the TPX3 chip. Two different scintillators, namely, 6LiF:ZnS(Ag) and 6LiI:Eu, were investigated to achieve the high resolution needed for spin-echo modulated small-angle neutron scattering (SEMSANS) and modulation of intensity with zero effort (MIEZE). The methodology for conducting event-mode analysis is described, including the optimization of clustering parameters for both scintillators. The detector with both scintillators was characterized with respect to detection efficiency, spatial resolution, count rate, uniformity, and γ-sensitivity. The 6LiF:ZnS(Ag) scintillator-based detector achieved a spatial resolution of 200 µm and a count rate capability of 1.1 × 105 cps, while the 6LiI:Eu scintillator-based detector demonstrated a spatial resolution of 250 µm and a count rate capability exceeding 2.9 × 105 cps. Furthermore, high-frequency intensity modulations in both spatial and temporal domains were successfully observed, confirming the suitability of this detector for SEMSANS and MIEZE techniques, respectively.

2.
Sci Robot ; 8(80): eadi3099, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37494463

ABSTRACT

NASA's Perseverance rover uses robotic autonomy to achieve its mission goals on Mars. Its self-driving autonomous navigation system (AutoNav) has been used to evaluate 88% of the 17.7-kilometer distance traveled during its first Mars year of operation. Previously, the maximum total autonomous distance evaluated was 2.4 kilometers by the Opportunity rover during its 14-year lifetime. AutoNav has set multiple planetary rover records, including the greatest distance driven without human review (699.9 meters) and the greatest single-day drive distance (347.7 meters). The Autonomous Exploration for Gathering Increased Science (AEGIS) system analyzes wide-angle imagery onboard to autonomously select targets for observations by the SuperCam instrument, a multimode sensor suite capable of millimeter-scale geochemical and mineralogical analysis. AEGIS enables observations of scientifically interesting targets during or immediately after long drives without the need for ground communication. OnBoard Planner (OBP) is a scheduling capability planned for operational use in September 2023 that has the potential to reduce energy usage by up to 20% and complete drive and arm-contact science campaigns in 25% fewer days on Mars. This paper presents an overview of the AutoNav, AEGIS, and OBP capabilities used on Perseverance.

3.
Rev Sci Instrum ; 94(3): 033901, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012763

ABSTRACT

Neutron resonance spin echo (NRSE) technique has the potential to increase the Fourier time and energy resolution in neutron scattering by using radio frequency (rf) neutron spin-flippers. However, aberrations arising from variations in the neutron path length between the rf flippers reduce the polarization. Here, we develop and test a transverse static-field magnet, a series of which are placed between the rf flippers, to correct for these aberrations. The prototype correction magnet was both simulated in an NRSE beamline using McStas, a Monte Carlo neutron ray-tracing software package, and measured using neutrons. The results from the prototype demonstrate that this static-field design corrects for transverse-field NRSE aberrations.

4.
Rev Sci Instrum ; 91(1): 015117, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012594

ABSTRACT

Despite the challenges, neutron resonance spin echo still holds the promise to improve upon neutron spin echo for the measurement of slow dynamics in materials. We present a bootstrap, radio frequency neutron spin flipper using high temperature superconducting technology capable of flipping neutron spin with either nonadiabatic or adiabatic modes. A frequency of 2 MHz has been achieved, which would achieve an effective field integral of 0.35 T m for a meter of separation in a neutron resonance spin echo spectrometer at the current device specifications. In bootstrap mode, the self-cancellation of Larmor phase aberrations can be achieved with the appropriate selection of the polarity of the gradient coils.

5.
J Chem Phys ; 147(17): 174703, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29117688

ABSTRACT

MnNiO3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Monte Carlo study of the bulk properties of MnNiO3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å3, which compares well to the experimental value of 94.4 Å3. A bulk modulus of 217 GPa is predicted for MnNiO3. We rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO3.

6.
Environ Sci Technol ; 46(8): 4275-82, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22380547

ABSTRACT

In jurisdictions including the US and the EU ground transportation and marine fuels have recently been required to contain lower concentrations of sulfur, which has resulted in reduced atmospheric SO(x) emissions. In contrast, the maximum sulfur content of aviation fuel has remained unchanged at 3000 ppm (although sulfur levels average 600 ppm in practice). We assess the costs and benefits of a potential ultra-low sulfur (15 ppm) jet fuel standard ("ULSJ"). We estimate that global implementation of ULSJ will cost US$1-4bn per year and prevent 900-4000 air quality-related premature mortalities per year. Radiative forcing associated with reduction in atmospheric sulfate, nitrate, and ammonium loading is estimated at +3.4 mW/m(2) (equivalent to about 1/10th of the warming due to CO(2) emissions from aviation) and ULSJ increases life cycle CO(2) emissions by approximately 2%. The public health benefits are dominated by the reduction in cruise SO(x) emissions, so a key uncertainty is the atmospheric modeling of vertical transport of pollution from cruise altitudes to the ground. Comparisons of modeled and measured vertical profiles of CO, PAN, O(3), and (7)Be indicate that this uncertainty is low relative to uncertainties regarding the value of statistical life and the toxicity of fine particulate matter.


Subject(s)
Air Pollutants/standards , Air Pollution/prevention & control , Hydrocarbons/standards , Sulfur Oxides/standards , Sulfur/standards , Air Pollutants/economics , Air Pollutants/toxicity , Air Pollution/economics , Air Pollution/legislation & jurisprudence , Climate Change , Cost-Benefit Analysis , Humans , Models, Theoretical , Particulate Matter/economics , Particulate Matter/standards , Particulate Matter/toxicity , Sulfur/economics , Sulfur Oxides/economics , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...