Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Clin Microbiol ; 60(1): e0174221, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34705535

ABSTRACT

Point-of-care antigen tests are an important tool for SARS-CoV-2 detection. Antigen tests are less sensitive than real-time reverse transcriptase PCR (rRT-PCR). Data on the performance of the BinaxNOW antigen test compared to rRT-PCR and viral culture by symptom and known exposure status, timing during disease, or exposure period and demographic variables are limited. During 3 to 17 November 2020, we collected paired upper respiratory swab specimens to test for SARS-CoV-2 by rRT-PCR and Abbott BinaxNOW antigen test at two community testing sites in Pima County, Arizona. We administered a questionnaire to capture symptoms, known exposure status, and previous SARS-CoV-2 test results. Specimens positive by either test were analyzed by viral culture. Previously we showed overall BinaxNOW sensitivity was 52.5%. Here, we showed BinaxNOW sensitivity increased to 65.7% among currently symptomatic individuals reporting a known exposure. BinaxNOW sensitivity was lower among participants with a known exposure and previously symptomatic (32.4%) or never symptomatic (47.1%) within 14 days of testing. Sensitivity was 71.1% in participants within a week of symptom onset. In participants with a known exposure, sensitivity was highest 8 to 10 days postexposure (75%). The positive predictive value for recovery of virus in cell culture was 56.7% for BinaxNOW-positive and 35.4% for rRT-PCR-positive specimens. Result reporting time was 2.5 h for BinaxNOW and 26 h for rRT-PCR. Point-of-care antigen tests have a shorter turnaround time than laboratory-based nucleic acid amplification tests, which allows for more rapid identification of infected individuals. Antigen test sensitivity limitations are important to consider when developing a testing program.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Humans , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
2.
Emerg Infect Dis ; 27(10): 2662-2665, 2021.
Article in English | MEDLINE | ID: mdl-34399086

ABSTRACT

We used the BinaxNOW COVID-19 Ag Card to screen 1,540 asymptomatic college students for severe acute respiratory syndrome coronavirus 2 in a low-prevalence setting. Compared with reverse transcription PCR, BinaxNOW showed 20% overall sensitivity; among participants with culturable virus, sensitivity was 60%. BinaxNOW provides point-of-care screening but misses many infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Point-of-Care Systems , Sensitivity and Specificity , Students
3.
MMWR Morb Mortal Wkly Rep ; 70(3): 100-105, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33476316

ABSTRACT

Rapid antigen tests, such as the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW), offer results more rapidly (approximately 15-30 minutes) and at a lower cost than do highly sensitive nucleic acid amplification tests (NAATs) (1). Rapid antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in symptomatic persons (2), but data are lacking on test performance in asymptomatic persons to inform expanded screening testing to rapidly identify and isolate infected persons (3). To evaluate the performance of the BinaxNOW rapid antigen test, it was used along with real-time reverse transcription-polymerase chain reaction (RT-PCR) testing to analyze 3,419 paired specimens collected from persons aged ≥10 years at two community testing sites in Pima County, Arizona, during November 3-17, 2020. Viral culture was performed on 274 of 303 residual real-time RT-PCR specimens with positive results by either test (29 were not available for culture). Compared with real-time RT-PCR testing, the BinaxNOW antigen test had a sensitivity of 64.2% for specimens from symptomatic persons and 35.8% for specimens from asymptomatic persons, with near 100% specificity in specimens from both groups. Virus was cultured from 96 of 274 (35.0%) specimens, including 85 (57.8%) of 147 with concordant antigen and real-time RT-PCR positive results, 11 (8.9%) of 124 with false-negative antigen test results, and none of three with false-positive antigen test results. Among specimens positive for viral culture, sensitivity was 92.6% for symptomatic and 78.6% for asymptomatic individuals. When the pretest probability for receiving positive test results for SARS-CoV-2 is elevated (e.g., in symptomatic persons or in persons with a known COVID-19 exposure), a negative antigen test result should be confirmed by NAAT (1). Despite a lower sensitivity to detect infection, rapid antigen tests can be an important tool for screening because of their quick turnaround time, lower costs and resource needs, high specificity, and high positive predictive value (PPV) in settings of high pretest probability. The faster turnaround time of the antigen test can help limit transmission by more rapidly identifying infectious persons for isolation, particularly when used as a component of serial testing strategies.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , Community Health Services , Adolescent , Adult , Aged , Aged, 80 and over , Arizona/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Child , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Time Factors , Young Adult
4.
Public Health Rep ; 134(2_suppl): 53S-57S, 2019.
Article in English | MEDLINE | ID: mdl-31682562

ABSTRACT

This study describes the efforts and outcomes associated with the establishment of a clinical sample repository during the 2016 Zika virus epidemic. To overcome the challenge of limited access to clinical samples to support diagnostic test development, multiple US Department of Health and Human Services (HHS) agencies formed a partnership to create the HHS Zika Specimen Repository. In 2016-2017, the Biomedical Advanced Research and Development Authority and the Centers for Disease Control and Prevention collected patient specimens (4420 convalescent sera aliquots from 100 donors and 7171 plasma aliquots from 239 donors), confirmed Zika virus test results, assembled 1 panel for molecular testing (n = 25 sets) and 7 panels for serologic testing (n = 92), and distributed the panels to test developers. We manufactured 8 test panels and distributed 74 sets of panels to 32 commercial companies, public health partners, and research institutions. Manufacturers used these panels to generate data that supported 14 US Food and Drug Administration (FDA) emergency use authorizations and 1 FDA approval. To develop a repository that can respond immediately to future disease outbreaks, we recommend that organizations pre-position procedures, resources, and partnerships to optimize each partner's contribution.


Subject(s)
Diagnostic Tests, Routine/standards , Disease Outbreaks/statistics & numerical data , Public Health/standards , Public-Private Sector Partnerships/trends , United States Dept. of Health and Human Services/trends , Zika Virus Infection/epidemiology , Zika Virus/isolation & purification , Centers for Disease Control and Prevention, U.S. , Disease Outbreaks/prevention & control , Humans , United States , Zika Virus/genetics , Zika Virus Infection/blood
5.
MMWR Morb Mortal Wkly Rep ; 66(41): 1089-1099, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29049277

ABSTRACT

CDC has updated its interim guidance for U.S. health care providers caring for infants with possible congenital Zika virus infection (1) in response to recently published updated guidance for health care providers caring for pregnant women with possible Zika virus exposure (2), unknown sensitivity and specificity of currently available diagnostic tests for congenital Zika virus infection, and recognition of additional clinical findings associated with congenital Zika virus infection. All infants born to mothers with possible Zika virus exposure* during pregnancy should receive a standard evaluation at birth and at each subsequent well-child visit including a comprehensive physical examination, age-appropriate vision screening and developmental monitoring and screening using validated tools (3-5), and newborn hearing screen at birth, preferably using auditory brainstem response (ABR) methodology (6). Specific guidance for laboratory testing and clinical evaluation are provided for three clinical scenarios in the setting of possible maternal Zika virus exposure: 1) infants with clinical findings consistent with congenital Zika syndrome regardless of maternal testing results, 2) infants without clinical findings consistent with congenital Zika syndrome who were born to mothers with laboratory evidence of possible Zika virus infection,† and 3) infants without clinical findings consistent with congenital Zika syndrome who were born to mothers without laboratory evidence of possible Zika virus infection. Infants in the first two scenarios should receive further testing and evaluation for Zika virus, whereas for the third group, further testing and clinical evaluation for Zika virus are not recommended. Health care providers should remain alert for abnormal findings (e.g., postnatal-onset microcephaly and eye abnormalities without microcephaly) in infants with possible congenital Zika virus exposure without apparent abnormalities at birth.


Subject(s)
Practice Guidelines as Topic , Zika Virus Infection/congenital , Centers for Disease Control and Prevention, U.S. , Female , Humans , Infant , Pregnancy , Pregnancy Complications, Infectious , United States , Zika Virus Infection/diagnosis , Zika Virus Infection/therapy
6.
MMWR Morb Mortal Wkly Rep ; 66(29): 781-793, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28749921

ABSTRACT

CDC has updated the interim guidance for U.S. health care providers caring for pregnant women with possible Zika virus exposure in response to 1) declining prevalence of Zika virus disease in the World Health Organization's Region of the Americas (Americas) and 2) emerging evidence indicating prolonged detection of Zika virus immunoglobulin M (IgM) antibodies. Zika virus cases were first reported in the Americas during 2015-2016; however, the incidence of Zika virus disease has since declined. As the prevalence of Zika virus disease declines, the likelihood of false-positive test results increases. In addition, emerging epidemiologic and laboratory data indicate that, as is the case with other flaviviruses, Zika virus IgM antibodies can persist beyond 12 weeks after infection. Therefore, IgM test results cannot always reliably distinguish between an infection that occurred during the current pregnancy and one that occurred before the current pregnancy, particularly for women with possible Zika virus exposure before the current pregnancy. These limitations should be considered when counseling pregnant women about the risks and benefits of testing for Zika virus infection during pregnancy. This updated guidance emphasizes a shared decision-making model for testing and screening pregnant women, one in which patients and providers work together to make decisions about testing and care plans based on patient preferences and values, clinical judgment, and a balanced assessment of risks and expected outcomes.


Subject(s)
Health Personnel , Practice Guidelines as Topic , Pregnancy Complications, Infectious/prevention & control , Zika Virus Infection/prevention & control , Centers for Disease Control and Prevention, U.S. , Female , Humans , Pregnancy , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...