Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Immunol ; 247: 109219, 2023 02.
Article in English | MEDLINE | ID: mdl-36581221

ABSTRACT

BACKGROUND: HLA-A29-positive birdshot chorioretinitis (BCR) is an inflammatory eye disorder that is generally assumed to be caused by an autoimmune response to HLA-A29-presented peptides from retinal arrestin (SAG), yet the epitopes recognized by CD8+ T cells from patients remain to be identified. OBJECTIVES: The identification of natural ligands of SAG presented by HLA-A29. To quantify CD8+ T cells reactive to antigenic SAG peptides presented by HLA-A29 in patients and controls. METHODS: We performed mass-spectrometry based immunopeptidomics of HLA-A29 of antigen-presenting cell lines from patients engineered to express SAG. MHC-I Dextramer technology was utilised to determine expansion of antigen-specific CD8+ T cells reactive to SAG peptides in complex with HLA-A29 in a cohort of BCR patients, HLA-A29-positive controls, and HLA-A29-negative controls. RESULTS: We report on the naturally presented antigenic SAG peptides identified by sequencing the HLA-A29 immunopeptidome of antigen-presenting cells of patients. We show that the N-terminally extended SAG peptide precursors can be trimmed in vitro by the antigen-processing aminopeptidases ERAP1 and ERAP2. Unexpectedly, no enhanced antigen engagement by CD8+ T cells upon stimulation with SAG peptides was observed in patients or HLA-A29-positive controls. Multiplexed HLA-A29-peptide dextramer profiling of a case-control cohort revealed that CD8+ T cells specific for these SAG peptides were neither detectable in peripheral blood nor in eye biopsies of patients. CONCLUSIONS: Collectively, these findings demonstrate that SAG is not a CD8+ T cell autoantigen and sharply contrast the paradigm in the pathogenesis of BCR. Therefore, the mechanism by which HLA-A29 is associated with BCR does not involve SAG.


Subject(s)
Chorioretinitis , Humans , Birdshot Chorioretinopathy , Arrestin , HLA-A Antigens , Retina , CD8-Positive T-Lymphocytes , Peptides/metabolism , Autoantigens , Aminopeptidases , Minor Histocompatibility Antigens
2.
Sci Rep ; 7: 41595, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28128370

ABSTRACT

Retinal diseases generally are vision-threatening conditions that warrant appropriate clinical decision-making which currently solely dependents upon extensive clinical screening by specialized ophthalmologists. In the era where molecular assessment has improved dramatically, we aimed at the identification of biomarkers in 175 ocular fluids to classify four archetypical ocular conditions affecting the retina (age-related macular degeneration, idiopathic non-infectious uveitis, primary vitreoretinal lymphoma, and rhegmatogenous retinal detachment) with one single test. Unsupervised clustering of ocular proteins revealed a classification strikingly similar to the clinical phenotypes of each disease group studied. We developed and independently validated a parsimonious model based merely on three proteins; interleukin (IL)-10, IL-21, and angiotensin converting enzyme (ACE) that could correctly classify patients with an overall accuracy, sensitivity and specificity of respectively, 86.7%, 79.4% and 92.5%. Here, we provide proof-of-concept for molecular profiling as a diagnostic aid for ophthalmologists in the care for patients with retinal conditions.


Subject(s)
Eye Proteins/metabolism , Retinal Diseases/diagnosis , Retinal Diseases/metabolism , Adult , Aged , Aged, 80 and over , Algorithms , Aqueous Humor/metabolism , Biomarkers , Clinical Decision-Making , Cluster Analysis , Computational Biology/methods , Female , Humans , Male , Middle Aged , Proteome , Proteomics/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...