Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Cell Biol ; 103(1): 151384, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215579

ABSTRACT

Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.


Subject(s)
Cell Adhesion Molecules , Phagocytosis , Animals , Humans , Cytoskeleton , Signal Transduction , Phosphorylation , Carcinoembryonic Antigen
2.
J Cell Sci ; 136(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37264948

ABSTRACT

Opsonin-independent phagocytosis mediated by human carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) has evolved to control a subset of human-restricted bacterial pathogens. CEACAM3 engagement triggers rapid GTP-loading of the small GTPase Rac as a master regulator of cytoskeletal rearrangements and lamellipodia-driven internalization. To identify components of the CEACAM3-initiated signaling cascade, we performed a genome-wide CRISPR/Cas9-based screen in human myeloid cells. Following infection with fluorescently labeled bacteria, cells exhibiting elevated phagocytosis (gain-of-function) as well as cells showing reduced phagocytosis (loss-of-function) were sorted and enrichment of individual single-guide RNAs (sgRNAs) was determined by next generation sequencing. Concentrating on genes whose targeting by three distinct sgRNAs consistently resulted in a gain-of-function phenotype, we identified the Rac-GTP-sequestering protein CYRI-B as a negative regulator of CEACAM3-mediated phagocytosis. Clonal HL-60 cell lines with CYRI-B knockout showed enhanced CEACAM3-downstream signaling, such as Rac GTP loading and phosphorylation of PAK kinases, leading to increased phagocytosis of bacteria. Complementation of the CYRI-B knockout cells reverted the knockout phenotype. Our results unravel components of CEACAM3-initiated opsonin-independent phagocytosis on a genome-wide level and highlight CYRI-B as a negative regulator of CEACAM3-initiated signaling in myeloid cells.


Subject(s)
Carcinoembryonic Antigen , Opsonin Proteins , Humans , Carcinoembryonic Antigen/genetics , Carcinoembryonic Antigen/metabolism , Phagocytosis/genetics , Cell Adhesion Molecules/genetics , Bacteria/metabolism , Guanosine Triphosphate
3.
Microbiol Spectr ; 9(1): e0036121, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34259547

ABSTRACT

Current procurement of specimens for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection requires trained personnel and dedicated equipment. We compared standard nasopharyngeal swabs with self-collected gargle lavage fluid obtained from 80 mostly symptomatic outpatients. After RNA extraction, RT-PCR to detect SARS-CoV-2 was performed. Qualitative results obtained with the paired samples from individual outpatients were 100% congruent. Therefore, self-collected gargle lavage fluid can serve as a suitable specimen for coronavirus disease 2019 (COVID-19) testing in outpatients. IMPORTANCE The SARS-CoV-2 pandemic still strains health care systems worldwide. While COVID-19 testing is considered an essential pillar in combating this infectious disease, shortages in supplies and trained health care personnel often limit the procurement of patient samples, in particular in outpatient settings. Here, we compared the simple self-collection of gargle lavage fluid with the gold standard nasopharyngeal swab as a specimen for COVID-19 testing. By finding complete congruence of results obtained with paired samples of a sizeable patient cohort, our results strongly support the idea that the painless self-collection of gargle lavage fluid provides a suitable and uncomplicated sample for reliable SARS-CoV-2 detection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Outpatients , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Therapeutic Irrigation/methods , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Pandemics , Young Adult
4.
PLoS One ; 15(11): e0241740, 2020.
Article in English | MEDLINE | ID: mdl-33137168

ABSTRACT

SARS-CoV-2 is spreading globally with unprecedented consequences for modern societies. The early detection of infected individuals is a pre-requisite to contain the virus. Currently, purification of RNA from patient samples followed by RT-PCR is the gold standard to assess the presence of this single-strand RNA virus. However, these procedures are time consuming, require continuous supply of specialized reagents, and are prohibitively expensive in resource-poor settings. Here, we report an improved nucleic-acid-based approach to detect SARS-CoV-2 with the ability to detect as little as five viral genome equivalents. The approach delivers results without the need to purify RNA, reduces handling steps, minimizes costs, and allows evaluation by non-specialized equipment. The use of unprocessed swap samples is enabled by employing a heat-stable RNA- and DNA-dependent DNA polymerase, which performs the double task of stringent reverse transcription of RNA at elevated temperatures as well as PCR amplification of a SARS-CoV-2 specific target gene. As results are obtained within 2 hours and can be read-out by a hand-held LED-screen, this novel protocol will be of particular importance for large-scale virus surveillance in economically constrained settings.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Humans , Nasopharynx/virology , Pandemics , Pneumonia, Viral/virology , RNA, Viral/genetics , SARS-CoV-2 , Temperature
5.
Front Immunol ; 10: 3160, 2019.
Article in English | MEDLINE | ID: mdl-32117212

ABSTRACT

Phagocytosis is one of the key innate defense mechanisms executed by specialized cells in multicellular animals. Recent evidence suggests that a particular phagocytic receptor expressed by human polymorphonuclear granulocytes, the carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3), is one of the fastest-evolving human proteins. In this focused review, we will try to resolve the conundrum why a conserved process such as phagocytosis is conducted by a rapidly changing receptor. Therefore, we will first summarize the biochemical and structural details of this immunoglobulin-related glycoprotein in the context of the human CEACAM family. The function of CEACAM3 for the efficient, opsonin-independent detection and phagocytosis of highly specialized, host-restricted bacteria will be further elaborated. Taking into account the decisive role of CEACAM3 in the interaction with pathogenic bacteria, we will discuss the evolutionary trajectory of the CEACAM3 gene within the primate lineage and highlight the consequences of CEACAM3 polymorphisms in human populations. From a synopsis of these studies, CEACAM3 emerges as an important component of human innate immunity and a prominent example of a dedicated receptor for professional phagocytosis.


Subject(s)
Bacteria/immunology , Carcinoembryonic Antigen/genetics , Carcinoembryonic Antigen/immunology , Phagocytosis/genetics , Phagocytosis/immunology , Animals , Biological Evolution , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Primates
6.
PLoS One ; 9(9): e109078, 2014.
Article in English | MEDLINE | ID: mdl-25275604

ABSTRACT

Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion.


Subject(s)
Gelsolin/metabolism , Microfilament Proteins/metabolism , Osteoclasts/metabolism , Osteogenesis , Actins/metabolism , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , Cell Movement/drug effects , Cell Shape/drug effects , Clone Cells , Dentin/metabolism , Gelsolin/genetics , Gene Knockdown Techniques , Mice, Inbred C57BL , Microfilament Proteins/genetics , Monocytes/drug effects , Monocytes/metabolism , Oligonucleotide Array Sequence Analysis , Osteoclasts/cytology , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteogenesis/genetics , RANK Ligand/pharmacology , Solubility , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...