Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 36(7): 1170-2, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21479019

ABSTRACT

We experimentally study the fields close to an interface between two photonic crystal waveguides that have different dispersion properties. After the transition from a waveguide in which the group velocity of light is v(g) ~ c/10 to a waveguide in which it is v(g) ~ c/100, we observe a gradual increase in the field intensity and the lateral spreading of the mode. We attribute this evolution to the existence of a weakly evanescent mode that exponentially decays away from the interface. We compare this to the situation where the transition between the waveguides only leads to a minor change in group velocity and show that, in that case, the evolution is absent. Furthermore, we apply novel numerical mode extraction techniques to confirm experimental results.

2.
Opt Express ; 18(15): 16112-9, 2010 Jul 19.
Article in English | MEDLINE | ID: mdl-20720996

ABSTRACT

We characterize bending losses of curved plasmonic nanowire waveguides for radii of curvature ranging from 1 to 12 microm and widths down to 40 nm. We use near-field measurements to separate bending losses from propagation losses. The attenuation due to bending loss is found to be as low as 0.1 microm(-1) for a curved waveguide with a width of 70 nm and a radius of curvature of 2 microm. Experimental results are supported by Finite Difference Time Domain simulations. An analytical model developed for dielectric waveguides is used to predict the trend of rising bending losses with decreasing radius of curvature in plasmonic nanowires.

3.
Nano Lett ; 10(9): 3665-9, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20722401

ABSTRACT

We show that surface plasmon polaritons (SPPs) can be concentrated to subwavelength dimensions in a nanoscale dielectric wedge on a metal substrate. An adiabatic model explains how SPPs propagating on a Ag substrate covered with a thin Si film of slowly increasing thickness become highly confined inside the Si layer. Simulations predict strong subwavelength focusing near the surface plasmon resonance frequency. Unlike alternative strategies, this method does not require the nanoscale shaping of metal surfaces.

4.
Opt Lett ; 34(21): 3418-20, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19881613

ABSTRACT

We present a method to fully characterize linear photonic devices that change their properties on ultrashort time scales. When we feed the device with a broadband input pulse and detect the resulting output field for a sufficient number of arrival times of the input, the device response to any other input with smaller bandwidth can be extracted numerically, without the need for additional measurements. Our approach is based on the formalism of linear time-varying systems, and we experimentally demonstrate its feasibility for the example of an ultrafast nanophotonic switch.

5.
Phys Rev Lett ; 102(20): 203904, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19519030

ABSTRACT

We show with both experiment and calculation that highly confined surface plasmon polaritons can be efficiently excited on metallic nanowires through the process of mode transformation. One specific mode in a metallic waveguide is identified that adiabatically transforms to the confined nanowire mode as the waveguide width is reduced. Phase- and polarization-sensitive near-field investigation reveals the characteristic antisymmetric polarization nature of the mode and explains the coupling mechanism.

6.
Nano Lett ; 8(9): 2925-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18690753

ABSTRACT

A nanoscale gap between two metal surfaces can confine propagating surface plasmon polaritons (SPPs) to very small dimensions, but this geometry makes it inherently difficult to image SPP propagation at high resolution. We demonstrate the near-field probing of these SPPs, propagating within a 50 nm thick Si 3N 4 waveguide with Ag cladding layers for frequencies ranging from the blue to the near-infrared. Using near-field SPP interferometry, we determine the wave vector, showing that the wavelength is shortened to values as small as 156 nm for a free-space wavelength of 532 nm.

7.
Opt Express ; 16(1): 45-57, 2008 Jan 07.
Article in English | MEDLINE | ID: mdl-18521131

ABSTRACT

We investigate the focusing of surface plasmon polaritons (SPPs) excited with 1.5 microm light in a tapered Au waveguide on a planar dielectric substrate by experiments and simulations. We find that nanofocusing can be obtained when the asymmetric bound mode at the substrate side of the metal film is excited. The propagation and concentration of this mode to the tip is demonstrated. No sign of a cutoff waveguide width is observed as the SPPs propagate along the tapered waveguide. Simulations show that such concentrating behavior is not possible for excitation of the mode at the low-index side of the film. The mode that enables the focusing exhibits a strong resemblance to the asymmetric mode responsible for focusing in conical waveguides. This work demonstrates a practical implementation of plasmonic nanofocusing on a planar substrate.


Subject(s)
Gold , Image Enhancement/instrumentation , Nanoparticles , Nanotechnology/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Particle Size , Surface Plasmon Resonance/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...