Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Earth Space Chem ; 5(11): 3075-3086, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34825123

ABSTRACT

Globally, the need for radioactive waste disposal and contaminated land management is clear. Here, gaining an improved understanding of how biogeochemical processes, such as Fe(III) and sulfate reduction, may control the environmental mobility of radionuclides is important. Uranium (U), typically the most abundant radionuclide by mass in radioactive wastes and contaminated land scenarios, may have its environmental mobility impacted by biogeochemical processes within the subsurface. This study investigated the fate of U(VI) in an alkaline (pH ∼9.6) sulfate-reducing enrichment culture obtained from a high-pH environment. To explore the mobility of U(VI) under alkaline conditions where iron minerals are ubiquitous, a range of conditions were tested, including high (30 mM) and low (1 mM) carbonate concentrations and the presence and absence of Fe(III). At high carbonate concentrations, the pH was buffered to approximately pH 9.6, which delayed the onset of sulfate reduction and meant that the reduction of U(VI)(aq) to poorly soluble U(IV)(s) was slowed. Low carbonate conditions allowed microbial sulfate reduction to proceed and caused the pH to fall to ∼7.5. This drop in pH was likely due to the presence of volatile fatty acids from the microbial respiration of gluconate. Here, aqueous sulfide accumulated and U was removed from solution as a mixture of U(IV) and U(VI) phosphate species. In addition, sulfate-reducing bacteria, such as Desulfosporosinus species, were enriched during development of sulfate-reducing conditions. Results highlight the impact of carbonate concentrations on U speciation and solubility in alkaline conditions, informing intermediate-level radioactive waste disposal and radioactively contaminated land management.

2.
Environ Sci Technol ; 55(8): 4597-4606, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33755437

ABSTRACT

Geological disposal is the globally preferred long-term solution for higher activity radioactive wastes (HAW) including intermediate level waste (ILW). In a cementitious disposal system, cellulosic waste items present in ILW may undergo alkaline hydrolysis, producing significant quantities of isosaccharinic acid (ISA), a chelating agent for radionuclides. Although microbial degradation of ISA has been demonstrated, its impact upon the fate of radionuclides in a geological disposal facility (GDF) is a topic of ongoing research. This study investigates the fate of U(VI) in pH-neutral, anoxic, microbial enrichment cultures, approaching conditions similar to the far field of a GDF, containing ISA as the sole carbon source, and elevated phosphate concentrations, incubated both (i) under fermentation and (ii) Fe(III)-reducing conditions. In the ISA-fermentation experiment, U(VI) was precipitated as insoluble U(VI)-phosphates, whereas under Fe(III)-reducing conditions, the majority of the uranium was precipitated as reduced U(IV)-phosphates, presumably formed via enzymatic reduction mediated by metal-reducing bacteria, including Geobacter species. Overall, this suggests the establishment of a microbially mediated "bio-barrier" extending into the far field geosphere surrounding a GDF is possible and this biobarrier has the potential to evolve in response to GDF evolution and can have a controlling impact on the fate of radionuclides.


Subject(s)
Uranium , Biomineralization , Ferric Compounds , Oxidation-Reduction , Phosphates , Sugar Acids
3.
Sci Rep ; 8(1): 8753, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29884890

ABSTRACT

Intermediate level radioactive waste (ILW) generally contains a heterogeneous range of organic and inorganic materials, of which some are encapsulated in cement. Of particular concern are cellulosic waste items, which will chemically degrade under the conditions predicted during waste disposal, forming significant quantities of isosaccharinic acid (ISA), a strongly chelating ligand. ISA therefore has the potential to increase the mobility of a wide range of radionuclides via complex formation, including Ni-63 and Ni-59. Although ISA is known to be metabolized by anaerobic microorganisms, the biodegradation of metal-ISA complexes remains unexplored. This study investigates the fate of a Ni-ISA complex in Fe(III)-reducing enrichment cultures at neutral pH, representative of a microbial community in the subsurface. After initial sorption of Ni onto Fe(III)oxyhydroxides, microbial ISA biodegradation resulted in >90% removal of the remaining Ni from solution when present at 0.1 mM, whereas higher concentrations of Ni proved toxic. The microbial consortium associated with ISA degradation was dominated by close relatives to Clostridia and Geobacter species. Nickel was preferentially immobilized with trace amounts of biogenic amorphous iron sulfides. This study highlights the potential for microbial activity to help remove chelating agents and radionuclides from the groundwater in the subsurface geosphere surrounding a geodisposal facility.


Subject(s)
Clostridiaceae/metabolism , Ferric Compounds/metabolism , Geobacter/metabolism , Nickel/metabolism , Radioisotopes/metabolism , Sugar Acids/metabolism , Biodegradation, Environmental , Microbial Consortia , Radioactive Waste/analysis , Refuse Disposal
SELECTION OF CITATIONS
SEARCH DETAIL
...