Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 20(1): 34, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33536025

ABSTRACT

BACKGROUND: Anthranilate is a platform chemical used by the industry in the synthesis of a broad range of high-value products, such as dyes, perfumes and pharmaceutical compounds. Currently anthranilate is produced via chemical synthesis from non-renewable resources. Biological synthesis would allow the use of renewable carbon sources and avoid accumulation of toxic by-products. Microorganisms produce anthranilate as an intermediate in the tryptophan biosynthetic pathway. Several prokaryotic microorganisms have been engineered to overproduce anthranilate but attempts to engineer eukaryotic microorganisms for anthranilate production are scarce. RESULTS: We subjected Saccharomyces cerevisiae, a widely used eukaryotic production host organism, to metabolic engineering for anthranilate production. A single gene knockout was sufficient to trigger anthranilate accumulation both in minimal and SCD media and the titer could be further improved by subsequent genomic alterations. The effects of the modifications on anthranilate production depended heavily on the growth medium used. By growing an engineered strain in SCD medium an anthranilate titer of 567.9 mg l-1 was obtained, which is the highest reported with an eukaryotic microorganism. Furthermore, the anthranilate biosynthetic pathway was extended by expression of anthranilic acid methyltransferase 1 from Medicago truncatula. When cultivated in YPD medium, this pathway extension enabled production of the grape flavor compound methyl anthranilate in S. cerevisiae at 414 mg l-1. CONCLUSIONS: In this study we have engineered metabolism of S. cerevisiae for improved anthranilate production. The resulting strains may serve as a basis for development of efficient production host organisms for anthranilate-derived compounds. In order to demonstrate suitability of the engineered S. cerevisiae strains for production of such compounds, we successfully extended the anthranilate biosynthesis pathway to synthesis of methyl anthranilate.


Subject(s)
Metabolic Engineering , Microorganisms, Genetically-Modified/metabolism , Saccharomyces cerevisiae/metabolism , ortho-Aminobenzoates/metabolism , Microorganisms, Genetically-Modified/genetics , Saccharomyces cerevisiae/genetics
2.
Appl Microbiol Biotechnol ; 103(18): 7597-7615, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31346683

ABSTRACT

Diastatic strains of Saccharomyces cerevisiae are common contaminants in beer fermentations and are capable of producing an extracellular STA1-encoded glucoamylase. Recent studies have revealed variable diastatic ability in strains tested positive for STA1, and here, we elucidate genetic determinants behind this variation. We show that poorly diastatic strains have a 1162-bp deletion in the promoter of STA1. With CRISPR/Cas9-aided reverse engineering, we show that this deletion greatly decreases the ability to grow in beer and consume dextrin, and the expression of STA1. New PCR primers were designed for differentiation of highly and poorly diastatic strains based on the presence of the deletion in the STA1 promoter. In addition, using publically available whole genome sequence data, we show that the STA1 gene is prevalent among the 'Beer 2'/'Mosaic Beer' brewing strains. These strains utilize maltotriose efficiently, but the mechanisms for this have been unknown. By deleting STA1 from a number of highly diastatic strains, we show here that extracellular hydrolysis of maltotriose through STA1 appears to be the dominant mechanism enabling maltotriose use during wort fermentation in STA1+ strains. The formation and retention of STA1 seems to be an alternative evolutionary strategy for efficient utilization of sugars present in brewer's wort. The results of this study allow for the improved reliability of molecular detection methods for diastatic contaminants in beer and can be exploited for strain development where maltotriose use is desired.


Subject(s)
Fungal Proteins/genetics , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Starch/metabolism , Trisaccharides/metabolism , Beer/microbiology , CRISPR-Cas Systems , Dextrins/metabolism , Fermentation , Reproducibility of Results , Reverse Genetics , Saccharomyces cerevisiae Proteins/genetics , Sequence Deletion
3.
Article in English | MEDLINE | ID: mdl-30923622

ABSTRACT

BACKGROUND: The CRISPR/Cas9 is currently the predominant technology to enhance the genome editing efficiency in eukaryotes. Established tools for many fungal species exist while most of them are based on in vivo expressed Cas9 and guide RNA (gRNA). Alternatively, in vitro assembled Cas9 and gRNA ribonucleoprotein complexes can be used in genome editing, however, only a few examples have been reported in fungi. In general, high-throughput compatible transformation workflows for filamentous fungi are immature. RESULTS: In this study, a CRISPR/Cas9 facilitated transformation and genome editing method based on in vitro assembled ribonucleoprotein complexes was developed for the filamentous fungus Aspergillus niger. The method was downscaled to be compatible with 96-well microtiter plates. The optimized method resulted in 100% targeting efficiency for a single genomic target. After the optimization, the method was demonstrated to be suitable for multiplexed genome editing with two or three genomic targets in a metabolic engineering application. As a result, an A. niger strain with improved capacity to produce galactarate, a potential chemical building block, was generated. CONCLUSIONS: The developed microtiter plate compatible CRISPR/Cas9 method provides a basis for high-throughput genome editing workflows in A. niger and other related species. In addition, it improves the cost-effectiveness of CRISPR/Cas9 genome editing methods in fungi based on in vitro assembled ribonucleoproteins. The demonstrated metabolic engineering example with multiplexed genome editing highlights the applicability of the method.

4.
AMB Express ; 9(1): 16, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30701402

ABSTRACT

The most abundant hexuronate in plant biomass is D-galacturonate. D-Galacturonate is the main constituent of pectin. Pectin-rich biomass is abundantly available as sugar beet pulp or citrus processing waste and is currently mainly used as cattle feed. Other naturally occurring hexuronates are D-glucuronate, L-guluronate, D-mannuronate and L-iduronate. D-Glucuronate is a constituent of the plant cell wall polysaccharide glucuronoxylan and of the algal polysaccharide ulvan. Ulvan also contains L-iduronate. L-Guluronate and D-mannuronate are the monomers of alginate. These raw materials have the potential to be used as raw material in biotechnology-based production of fuels or chemicals. In this communication, we will review the microbial pathways related to these hexuronates and their potential use in biotechnology.

5.
Nucleic Acids Res ; 46(18): e111, 2018 10 12.
Article in English | MEDLINE | ID: mdl-29924368

ABSTRACT

Biotechnological production of fuels, chemicals and proteins is dependent on efficient production systems, typically genetically engineered microorganisms. New genome editing methods are making it increasingly easy to introduce new genes and functionalities in a broad range of organisms. However, engineering of all these organisms is hampered by the lack of suitable gene expression tools. Here, we describe a synthetic expression system (SES) that is functional in a broad spectrum of fungal species without the need for host-dependent optimization. The SES consists of two expression cassettes, the first providing a weak, but constitutive level of a synthetic transcription factor (sTF), and the second enabling strong, at will tunable expression of the target gene via an sTF-dependent promoter. We validated the SES functionality in six yeast and two filamentous fungi species in which high (levels beyond organism-specific promoters) as well as adjustable expression levels of heterologous and native genes was demonstrated. The SES is an unprecedentedly broadly functional gene expression regulation method that enables significantly improved engineering of fungi. Importantly, the SES system makes it possible to take in use novel eukaryotic microbes for basic research and various biotechnological applications.


Subject(s)
Cloning, Molecular/methods , Fungi/genetics , Gene Expression Regulation, Fungal , Genetic Engineering/methods , Genetic Vectors/genetics , Aspergillus niger/genetics , Gene Expression , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Synthetic Biology/methods , Trichoderma/genetics
6.
Biotechnol J ; : e1700593, 2018 May 05.
Article in English | MEDLINE | ID: mdl-29729128

ABSTRACT

Due to the rapidly increasing sequence information on gene variants generated by evolution and our improved abilities to engineer novel biological activities, microbial cells can be evolved for the production of a growing spectrum of compounds. For high productivity, efficient carbon channeling towards the end product is a key element. In large scale production systems the genetic modifications that ensure optimal performance cannot be dependent on plasmid-based regulators, but need to be engineered stably into the host genome. Here we describe a CRISPR/Cas9 mediated high-throughput workflow for combinatorial and multiplexed replacement of native promoters with synthetic promoters and the following high-throughput phenotype characterization in the yeast Saccharomyces cerevisiae. The workflow is demonstrated with three central metabolic genes, ZWF1, PGI1 and TKL1 encoding a glucose-6-phosphate dehydrogenase, phosphoglucose isomerase and transketolase, respectively. The synthetic promoter donor DNA libraries were generated by PCR and transformed to yeast cells. A 50% efficiency was achieved for simultaneous replacement at three individual loci using short 60-bp flanking homology sequences in the donor promoters. Phenotypic strain characterization was validated and demonstrated using liquid handling automation and 150 µl cultivation volume in 96-well plate format. The established workflow offers a robust platform for automated engineering and improvement of yeast strains.

7.
ACS Synth Biol ; 7(6): 1573-1587, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29750501

ABSTRACT

Sustainable production of chemicals, materials, and pharmaceuticals is increasingly performed by genetically engineered cell factories. Engineering of complex metabolic routes or cell behavior control systems requires robust and predictable gene expression tools. In this challenging task, orthogonality is a fundamental prerequisite for such tools. In this study, we developed and characterized in depth a comprehensive gene expression toolkit that allows accurate control of gene expression in Saccharomyces cerevisiae without marked interference with native cellular regulation. The toolkit comprises a set of transcription factors, designed to function as synthetic activators or repressors, and transcription-factor-dependent promoters, which together provide a broad expression range surpassing, at high end, the strongest native promoters. Modularity of the developed tools is demonstrated by establishing a novel bistable genetic circuit with robust performance to control a heterologous metabolic pathway and enabling on-demand switching between two alternative metabolic branches.


Subject(s)
Gene Regulatory Networks , Genetic Engineering/methods , Saccharomyces cerevisiae/genetics , Gene Expression Regulation, Fungal , Indoles/metabolism , Metabolic Networks and Pathways/genetics , Microorganisms, Genetically-Modified , Promoter Regions, Genetic , Repressor Proteins/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Transcription Factors/genetics
8.
FEBS Lett ; 592(1): 71-77, 2018 01.
Article in English | MEDLINE | ID: mdl-29265364

ABSTRACT

NADPH-dependent 5-keto-D-gluconate reductase was identified as a missing element in the pathway for D-glucuronate catabolism in fungi. The disruption of the gene, gluF, by CRISPR/Cas9 in the filamentous fungus Aspergillus niger resulted in a strain unable to catabolise D-glucuronate. The purified GluF protein was characterized and kcat and Km values of 23.7 ± 1.8 s-1 and 3.2 ± 0.1 mm for 5-keto-D-gluconate, respectively, were determined. The enzyme is reversible and is active with NADP+ and D-gluconate. We suggest a pathway for D-glucuronate catabolism with the intermediates L-gulonate, 2-keto-L-gulonate, L-idonate, 5-keto-D-gluconate, D-gluconate and D-gluconate-6-phosphate which is a part of the pentose phosphate pathway. A fungal enzyme activity for the conversion of L-gulonate to 2-keto-L-gulonate remains to be identified.


Subject(s)
Aspergillus niger/metabolism , Bacterial Proteins/metabolism , Fungal Proteins/metabolism , Glucuronic Acid/metabolism , Oxidoreductases/metabolism , Aspergillus niger/genetics , Aspergillus niger/growth & development , Bacterial Proteins/genetics , Fungal Proteins/genetics , Gene Deletion , Genes, Fungal , Kinetics , Metabolic Networks and Pathways , NADP/metabolism , Oxidoreductases/genetics , Pentose Phosphate Pathway
9.
Front Microbiol ; 8: 225, 2017.
Article in English | MEDLINE | ID: mdl-28261181

ABSTRACT

D-Glucuronic acid is a biomass component that occurs in plant cell wall polysaccharides and is catabolized by saprotrophic microorganisms including fungi. A pathway for D-glucuronic acid catabolism in fungal microorganisms is only partly known. In the filamentous fungus Aspergillus niger, the enzymes that are known to be part of the pathway are the NADPH requiring D-glucuronic acid reductase forming L-gulonate and the NADH requiring 2-keto-L-gulonate reductase that forms L-idonate. With the aid of RNA sequencing we identified two more enzymes of the pathway. The first is a NADPH requiring 2-keto-L-gulonate reductase that forms L-idonate, GluD. The second is a NAD+ requiring L-idonate 5-dehydrogenase forming 5-keto-gluconate, GluE. The genes coding for these two enzymes are clustered and share the same bidirectional promoter. The GluD is an enzyme with a strict requirement for NADP+/NADPH as cofactors. The kcat for 2-keto-L-gulonate and L-idonate is 21.4 and 1.1 s-1, and the Km 25.3 and 12.6 mM, respectively, when using the purified protein. In contrast, the GluE has a strict requirement for NAD+/NADH. The kcat for L-idonate and 5-keto-D-gluconate is 5.5 and 7.2 s-1, and the Km 30.9 and 8.4 mM, respectively. These values also refer to the purified protein. The gluD deletion resulted in accumulation of 2-keto-L-gulonate in the liquid cultivation while the gluE deletion resulted in reduced growth and cessation of the D-glucuronic acid catabolism.

10.
Microb Cell Fact ; 15(1): 210, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27955649

ABSTRACT

BACKGROUND: meso-Galactaric acid is a dicarboxylic acid that can be produced by the oxidation of D-galacturonic acid, the main constituent of pectin. Mould strains can be engineered to perform this oxidation by expressing the bacterial enzyme uronate dehydrogenase. In addition, the endogenous pathway for D-galacturonic acid catabolism has to be inactivated. The filamentous fungus Aspergillus niger would be a suitable strain for galactaric acid production since it is efficient in pectin hydrolysis, however, it is catabolizing the resulting galactaric acid via an unknown catabolic pathway. RESULTS: In this study, a transcriptomics approach was used to identify genes involved in galactaric acid catabolism. Several genes were deleted using CRISPR/Cas9 together with in vitro synthesized sgRNA. As a result, galactaric acid catabolism was disrupted. An engineered A. niger strain combining the disrupted galactaric and D-galacturonic acid catabolism with an expression of a heterologous uronate dehydrogenase produced galactaric acid from D-galacturonic acid. The resulting strain was also converting pectin-rich biomass to galactaric acid in a consolidated bioprocess. CONCLUSIONS: In the present study, we demonstrated the use of CRISPR/Cas9 mediated gene deletion technology in A. niger in an metabolic engineering application. As a result, a strain for the efficient production of galactaric acid from D-galacturonic acid was generated. The present study highlights the usefulness of CRISPR/Cas9 technology in the metabolic engineering of filamentous fungi.


Subject(s)
Aspergillus niger/genetics , Metabolic Engineering/methods , Sequence Analysis, RNA/methods , Sugar Acids/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats
11.
Microb Cell Fact ; 15(1): 144, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27538689

ABSTRACT

BACKGROUND: Pectin-rich wastes, such as citrus pulp and sugar beet pulp, are produced in considerable amounts by the juice and sugar industry and could be used as raw materials for biorefineries. One possible process in such biorefineries is the hydrolysis of these wastes and the subsequent production of ethanol. However, the ethanol-producing organism of choice, Saccharomyces cerevisiae, is not able to catabolize D-galacturonic acid, which represents a considerable amount of the sugars in the hydrolysate, namely, 18 % (w/w) from citrus pulp and 16 % (w/w) sugar beet pulp. RESULTS: In the current work, we describe the construction of a strain of S. cerevisiae in which the five genes of the fungal reductive pathway for D-galacturonic acid catabolism were integrated into the yeast chromosomes: gaaA, gaaC and gaaD from Aspergillus niger and lgd1 from Trichoderma reesei, and the recently described D-galacturonic acid transporter protein, gat1, from Neurospora crassa. This strain metabolized D-galacturonic acid in a medium containing D-fructose as co-substrate. CONCLUSION: This work is the first demonstration of the expression of a functional heterologous pathway for D-galacturonic acid catabolism in Saccharomyces cerevisiae. It is a preliminary step for engineering a yeast strain for the fermentation of pectin-rich substrates to ethanol.


Subject(s)
Hexuronic Acids/metabolism , Metabolic Networks and Pathways/genetics , Pectins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Aspergillus niger/genetics , Beta vulgaris , Citrus , Ethanol/metabolism , Fermentation , Fructose/metabolism , Hydrolysis , Metabolic Engineering/methods , Neurospora crassa/genetics , Trichoderma/genetics
12.
Sci Rep ; 6: 26329, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27189775

ABSTRACT

For the catabolism of D-glucuronate, different pathways are used by different life forms. The pathways in bacteria and animals are established, however, a fungal pathway has not been described. In this communication, we describe an enzyme that is essential for D-glucuronate catabolism in the filamentous fungus Aspergillus niger. The enzyme has an NADH dependent 2-keto-L-gulonate reductase activity forming L-idonate. The deletion of the corresponding gene, the gluC, results in a phenotype of no growth on D-glucuronate. The open reading frame of the A. niger 2-keto-L-gulonate reductase was expressed as an active protein in the yeast Saccharomyces cerevisiae. A histidine tagged protein was purified and it was demonstrated that the enzyme converts 2-keto-L-gulonate to L-idonate and, in the reverse direction, L-idonate to 2-keto-L-gulonate using the NAD(H) as cofactors. Such an L-idonate forming 2-keto-L-gulonate dehydrogenase has not been described previously. In addition, the finding indicates that the catabolic D-glucuronate pathway in A. niger differs fundamentally from the other known D-glucuronate pathways.


Subject(s)
Aspergillus niger/enzymology , Carbohydrate Dehydrogenases/metabolism , Fungal Proteins/metabolism , Glucuronates/metabolism , Sugar Acids/metabolism , Aspergillus niger/genetics , Carbohydrate Dehydrogenases/genetics , Fungal Proteins/genetics , Glucuronates/chemistry , Metabolic Networks and Pathways , Saccharomyces cerevisiae , Stereoisomerism
13.
AMB Express ; 6(1): 27, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27033543

ABSTRACT

L-Rhamnose is a high value rare sugar that is used as such or after chemical conversions. It is enriched in several biomass fractions such as the pectic polysaccharides rhamnogalacturonan I and II and in naringin, hesperidin, rutin, quercitrin and ulvan. We engineered the filamentous fungus Aspergillus niger to not consume L-rhamnose, while it is still able to produce the enzymes for the hydrolysis of L-rhamnose rich biomass. As a result we present a strain that can be used for the extraction of L-rhamnose in a consolidated process. In the process the biomass is hydrolysed to the monomeric sugars which are consumed by the fungus leaving the L-rhamnose.

14.
Microb Cell Fact ; 14: 2, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25566698

ABSTRACT

BACKGROUND: Synthetic L-ascorbic acid (vitamin C) is widely used as a preservative and nutrient in food and pharmaceutical industries. In the current production method, D-glucose is converted to L-ascorbic acid via several biochemical and chemical steps. The main source of L-ascorbic acid in human nutrition is plants. Several alternative metabolic pathways for L-ascorbic acid biosynthesis are known in plants. In one of them, D-galacturonic acid is the precursor. D-Galacturonic acid is also the main monomer in pectin, a plant cell wall polysaccharide. Pectin is abundant in biomass and is readily available from several waste streams from fruit and sugar processing industries. RESULTS: In the present work, we engineered the filamentous fungus Aspergillus niger for the conversion of D-galacturonic acid to L-ascorbic acid. In the generated pathway, the native D-galacturonate reductase activity was utilized while the gene coding for the second enzyme in the fungal D-galacturonic acid pathway, an L-galactonate consuming dehydratase, was deleted. Two heterologous genes coding for enzymes from the plant L-ascorbic acid pathway--L-galactono-1,4-lactone lactonase from Euglena gracilis (EgALase) and L-galactono-1,4-lactone dehydrogenase from Malpighia glabra (MgGALDH)--were introduced into the A. niger strain. Alternatively, an unspecific L-gulono-1,4-lactone lactonase (smp30) from the animal L-ascorbic acid pathway was introduced in the fungal strain instead of the plant L-galactono-1,4-lactone lactonase. In addition, a strain with the production pathway inducible with D-galacturonic acid was generated by using a bidirectional and D-galacturonic acid inducible promoter from the fungus. Even though, the lactonase enzyme activity was not observed in the resulting strains, they were capable of producing L-ascorbic acid from pure D-galacturonic acid or pectin-rich biomass in a consolidated bioprocess. Product titers up to 170 mg/l were achieved. CONCLUSIONS: In the current study, an L-ascorbic acid pathway using D-galacturonic acid as a precursor was introduced to a microorganism for the first time. This is also the first report on an engineered filamentous fungus for L-ascorbic acid production and a proof-of-concept of consolidated bioprocess for the production.


Subject(s)
Ascorbic Acid/biosynthesis , Aspergillus niger/metabolism , Hexuronic Acids/metabolism , Metabolic Engineering , Aspergillus niger/genetics , Batch Cell Culture Techniques , Euglena gracilis/enzymology , Fungal Proteins/genetics , Hydro-Lyases/genetics , Malpighiaceae/enzymology , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plasmids/genetics , Plasmids/metabolism , Promoter Regions, Genetic , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
15.
AMB Express ; 4: 33, 2014.
Article in English | MEDLINE | ID: mdl-24949267

ABSTRACT

Citrus processing waste is a leftover from the citrus processing industry and is available in large amounts. Typically, this waste is dried to produce animal feed, but sometimes it is just dumped. Its main component is the peel, which consists mostly of pectin, with D-galacturonic acid as the main monomer. Aspergillus niger is a filamentous fungus that efficiently produces pectinases for the hydrolysis of pectin and uses the resulting D-galacturonic acid and most of the other components of citrus peel for growth. We used engineered A. niger strains that were not able to catabolise D-galacturonic acid, but instead converted it to L-galactonic acid. These strains also produced pectinases for the hydrolysis of pectin and were used for the conversion of pectin in orange peel to L-galactonic acid in a consolidated process. The D-galacturonic acid in the orange peel was converted to L-galactonic acid with a yield close to 90%. Submerged and solid-state fermentation processes were compared.

16.
Appl Biochem Biotechnol ; 173(7): 1829-35, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24861318

ABSTRACT

Escherichia coli is able to utilize L-galactonate as a sole carbon source. A metabolic pathway for L-galactonate catabolism is described in E. coli, and it is known to be interconnected with D-galacturonate metabolism. The corresponding gene encoding the first enzyme in the L-galactonate pathway, L-galactonate-5-dehydrogenase, was suggested to be yjjN. However, L-galactonate dehydrogenase activity was never demonstrated with the yjjN gene product. Here, we show that YjjN is indeed an L-galactonate dehydrogenase having activity also for L-gulonate. The K m and k cat for L-galactonate were 19.5±0.6 mM and 0.51±0.03 s(-1), respectively. In addition, YjjN was applied for a quantitative detection of the both of these substances in a coupled assay. The detection limits for L-galactonate and L-gulonate were 1.65 and 10 µM, respectively.


Subject(s)
Escherichia coli/enzymology , Oxidoreductases/metabolism , Sugar Acids/metabolism , Escherichia coli/genetics , Kinetics , Oxidoreductases/genetics
17.
Fungal Genet Biol ; 64: 67-72, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24382357

ABSTRACT

In the genome of Aspergillus niger five genes were identified coding for proteins with homologies to sugar acid dehydratases. The open reading frames were expressed in Saccharomyces cerevisiae and the activities tested with a library of sugar acids. Four genes were identified to code for proteins with activities with sugar acids: an l-galactonate dehydratase (gaaB), two d-galactonate dehydratases (dgdA, dgdB) and an l-rhamnonate dehydratase (lraC). The specificities of the proteins were characterised. The l-galactonate dehydratase had highest activity with l-fuconate, however it is unclear whether the enzyme is involved in l-fuconate catabolism. None of the proteins showed activity with galactaric acid or galactarolactone.


Subject(s)
Aspergillus niger/enzymology , Fungal Proteins/metabolism , Hydro-Lyases/metabolism , Sugar Acids/metabolism , Fungal Proteins/classification , Fungal Proteins/genetics , Genes, Fungal , Hydro-Lyases/classification , Hydro-Lyases/genetics , Open Reading Frames , Saccharomyces cerevisiae/genetics
18.
Microb Cell Fact ; 12: 82, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24053654

ABSTRACT

BACKGROUND: Glycolic acid is a C2 hydroxy acid that is a widely used chemical compound. It can be polymerised to produce biodegradable polymers with excellent gas barrier properties. Currently, glycolic acid is produced in a chemical process using fossil resources and toxic chemicals. Biotechnological production of glycolic acid using renewable resources is a desirable alternative. RESULTS: The yeasts Saccharomyces cerevisiae and Kluyveromyces lactis are suitable organisms for glycolic acid production since they are acid tolerant and can grow in the presence of up to 50 g l(-1) glycolic acid. We engineered S. cerevisiae and K. lactis for glycolic acid production using the reactions of the glyoxylate cycle to produce glyoxylic acid and then reducing it to glycolic acid. The expression of a high affinity glyoxylate reductase alone already led to glycolic acid production. The production was further improved by deleting genes encoding malate synthase and the cytosolic form of isocitrate dehydrogenase. The engineered S. cerevisiae strain produced up to about 1 g l(-1) of glycolic acid in a medium containing d-xylose and ethanol. Similar modifications in K. lactis resulted in a much higher glycolic acid titer. In a bioreactor cultivation with D-xylose and ethanol up to 15 g l(-1) of glycolic acid was obtained. CONCLUSIONS: This is the first demonstration of engineering yeast to produce glycolic acid. Prior to this work glycolic acid production through the glyoxylate cycle has only been reported in bacteria. The benefit of a yeast host is the possibility for glycolic acid production also at low pH, which was demonstrated in flask cultivations. Production of glycolic acid was first shown in S. cerevisiae. To test whether a Crabtree negative yeast would be better suited for glycolic acid production we engineered K. lactis in the same way and demonstrated it to be a better host for glycolic acid production.


Subject(s)
Glycolates/metabolism , Kluyveromyces/metabolism , Saccharomyces cerevisiae/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Gene Expression Regulation, Fungal , Kluyveromyces/genetics , Metabolic Engineering , Saccharomyces cerevisiae/genetics , Tissue Engineering
19.
Appl Environ Microbiol ; 78(24): 8676-83, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23042175

ABSTRACT

D-Galacturonic acid, the main monomer of pectin, is an attractive substrate for bioconversions, since pectin-rich biomass is abundantly available and pectin is easily hydrolyzed. l-Galactonic acid is an intermediate in the eukaryotic pathway for d-galacturonic acid catabolism, but extracellular accumulation of l-galactonic acid has not been reported. By deleting the gene encoding l-galactonic acid dehydratase (lgd1 or gaaB) in two filamentous fungi, strains were obtained that converted d-galacturonic acid to l-galactonic acid. Both Trichoderma reesei Δlgd1 and Aspergillus niger ΔgaaB strains produced l-galactonate at yields of 0.6 to 0.9 g per g of substrate consumed. Although T. reesei Δlgd1 could produce l-galactonate at pH 5.5, a lower pH was necessary for A. niger ΔgaaB. Provision of a cosubstrate improved the production rate and titer in both strains. Intracellular accumulation of l-galactonate (40 to 70 mg g biomass(-1)) suggested that export may be limiting. Deletion of the l-galactonate dehydratase from A. niger was found to delay induction of d-galacturonate reductase and overexpression of the reductase improved initial production rates. Deletion of the l-galactonate dehydratase from A. niger also delayed or prevented induction of the putative d-galacturonate transporter An14g04280. In addition, A. niger ΔgaaB produced l-galactonate from polygalacturonate as efficiently as from the monomer.


Subject(s)
Aspergillus niger/metabolism , Hexuronic Acids/metabolism , Metabolic Engineering , Metabolic Networks and Pathways/genetics , Sugar Acids/metabolism , Trichoderma/metabolism , Aspergillus niger/genetics , Biotransformation , Culture Media/chemistry , Gene Deletion , Hydrogen-Ion Concentration , Trichoderma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...