Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 31(Pt 4): 681-689, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38838164

ABSTRACT

X-ray gas monitors (XGMs) are operated at the European XFEL for non-invasive single-shot pulse energy measurements and average beam-position monitoring. The underlying measurement principle is the photo-ionization of rare gas atoms at low gas pressures and the detection of the photo-ions and photo-electrons created. These are essential for tuning and sustaining self-amplified spontaneous emission (SASE) operation, machine radiation safety, and sorting single-shot experimental data according to pulse energy. In this paper, the first results from XGM operation at photon energies up to 30 keV are presented, which are far beyond the original specification of this device. Here, the Huge Aperture MultiPlier (HAMP) is used for single-shot pulse energy measurements since the standard X-ray gas monitor detectors (XGMDs) do not provide a sufficient signal-to-noise ratio, even at the highest operating gas pressures. A single-shot correlation coefficient of 0.98 is measured between consecutive XGMs operated with HAMP, which is as good as measuring with the standard XGMD detectors. An intra-train non-linearity of the HAMP signal is discovered, and operation parameters to mitigate this effect are studied. The upper repetition rate limit of HAMP operation at 2.25 MHz is also determined. Finally, the possibilities and limits for future XGM operation at photon energies up to 50 keV are discussed.

2.
Nature ; 622(7983): 471-475, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37758953

ABSTRACT

Resonant oscillators with stable frequencies and large quality factors help us to keep track of time with high precision. Examples range from quartz crystal oscillators in wristwatches to atomic oscillators in atomic clocks, which are, at present, our most precise time measurement devices1. The search for more stable and convenient reference oscillators is continuing2-6. Nuclear oscillators are better than atomic oscillators because of their naturally higher quality factors and higher resilience against external perturbations7-9. One of the most promising cases is an ultra-narrow nuclear resonance transition in 45Sc between the ground state and the 12.4-keV isomeric state with a long lifetime of 0.47 s (ref. 10). The scientific potential of 45Sc was realized long ago, but applications require 45Sc resonant excitation, which in turn requires accelerator-driven, high-brightness X-ray sources11 that have become available only recently. Here we report on resonant X-ray excitation of the 45Sc isomeric state by irradiation of Sc-metal foil with 12.4-keV photon pulses from a state-of-the-art X-ray free-electron laser and subsequent detection of nuclear decay products. Simultaneously, the transition energy was determined as [Formula: see text] with an uncertainty that is two orders of magnitude smaller than the previously known values. These advancements enable the application of this isomer in extreme metrology, nuclear clock technology, ultra-high-precision spectroscopy and similar applications.

3.
Rev Sci Instrum ; 93(11): 115111, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461550

ABSTRACT

The development and characterization of an angle-resolved photoelectron spectrometer, based on the electron time-of-flight concept, for hard x-ray photon diagnostics at the European Free-Electron Laser, are described. The instrument is meant to provide users and operators with pulse-resolved, non-invasive spectral distribution diagnostics, which in the hard x-ray regime is a challenge due to the poor cross-section and high kinetic energy of photoelectrons for the available target gases. We report on the performances of this instrument as obtained using hard x-rays at the PETRA III synchrotron at DESY in multibunch mode. Results are compared with electron trajectory simulations. We demonstrate a resolving power of 10 eV at incident photon energies up to at least 20 keV.

4.
J Synchrotron Radiat ; 28(Pt 1): 3-17, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33399547

ABSTRACT

The emerging concept of `beam by design' in free-electron laser (FEL) accelerator physics aims for accurate manipulation of the electron beam to tailor spectral and temporal properties of the radiation for specific experimental purposes, such as X-ray pump/X-ray probe and multiple wavelength experiments. `Beam by design' requires fast, efficient, and detailed feedback on the spectral and temporal properties of the generated X-ray radiation. Here a simple and cost-efficient method to extract information on the longitudinal Wigner distribution function of emitted FEL pulses is proposed. The method requires only an ensemble of measured FEL spectra and is rather robust with respect to accelerator fluctuations. The method is applied to both the simulated SASE spectra with known radiation properties as well as to the SASE spectra measured at the European XFEL revealing underlying non-linear chirp of the generated radiation. In the Appendices an intuitive understanding of time-frequency representations of chirped SASE radiation is provided.

5.
Rev Sci Instrum ; 91(10): 103101, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33138553

ABSTRACT

The European X-ray Free-Electron Laser Facility in Germany delivers x-ray pulses with femtosecond pulse duration at a repetition rate of up to 4.5 MHz. The free-electron laser radiation is created by the self-amplified spontaneous emission (SASE) process, whose stochastic nature gives rise to shot-to-shot fluctuations in most beam properties, including spectrum, pulse energy, spatial profile, wavefront, and temporal profile. Each spectrum consisting of many spikes varies in width and amplitude that appear differently within the envelope of the SASE spectrum. In order to measure and study the SASE spectrum, the HIgh REsolution hard X-ray single-shot (HIREX) spectrometer was installed in the photon tunnel of the SASE1 undulator beamline. It is based on diamond gratings, bent crystals as a dispersive element, and a MHz-repetition-rate strip detector. It covers a photon energy range of 3 keV-25 keV and a bandwidth of 0.5% of the SASE beam. The SASE spikes are resolved with 0.15 eV separation using the Si 440 reflection, providing a resolving power of 60 000 at a photon energy of 9.3 keV. The measured SASE bandwidth is 25 eV. In this paper, we discuss the design specifications, installation, and commissioning of the HIREX spectrometer. The spectral results using Si (110), Si (111), and C (110) crystals are presented.

6.
J Synchrotron Radiat ; 26(Pt 5): 1422-1431, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490130

ABSTRACT

The European X-ray Free-Electron Laser (European XFEL) (Altarelli et al., 2006; Tschentscher et al., 2017), the world's largest and brightest X-ray free-electron laser (Saldin et al., 1999; Pellegrini et al., 2016), went into operation in 2017. This article describes the as-built realization of photon diagnostics for this facility, the diagnostics commissioning and their application for commissioning of the facility, and results from the first year of operation, focusing on the SASE1 beamline, which was the first to be commissioned. The commissioning consisted of pre-beam checkout, first light from the bending magnets, X-rays from single undulator segments, SASE tuning with many undulator segments, first lasing, optics alignment for FEL beam transport through the tunnel up to the experiment hutches, and finally beam delivery to first users. The beam properties assessed by photon diagnostics throughout these phases included per-pulse intensity, beam position, shape, lateral dimensions and spectral properties. During this time period, the machine provided users with up to 14 keV photon energy, 1.5 mJ pulse energy, 300 FEL pulses per train and 4.5 MHz intra-bunch train repetition rate at a 10 Hz train repetition rate. Finally, an outlook is given into the diagnostic prospects for the future.


Subject(s)
Lasers , Particle Accelerators , Radiation Monitoring/methods , Calibration , Equipment Design , Europe , Photons , X-Rays
7.
J Synchrotron Radiat ; 26(Pt 4): 1010-1016, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274422

ABSTRACT

Commissioning and first operation of an angle-resolved photoelectron spectrometer for non-invasive shot-to-shot diagnostics at the European XFEL soft X-ray beamline are described. The objective with the instrument is to provide the users and operators with reliable pulse-resolved information regarding photon energy and polarization that opens up a variety of applications for novel experiments but also hardware optimization.


Subject(s)
Photoelectron Spectroscopy/instrumentation , X-Rays , Europe , Photons
8.
J Synchrotron Radiat ; 26(Pt 3): 708-713, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31074434

ABSTRACT

The European X-ray Free Electron Laser (EuXFEL) offers intense, coherent femtosecond pulses, resulting in characteristic peak brilliance values a billion times higher than that of conventional synchrotron facilities. Such pulses result in extreme peak radiation levels of the order of terawatts cm-2 for any optical component in the beam and can exceed the ablation threshold of many materials. Diamond is considered the optimal material for such applications due to its high thermal conductivity (2052 W mK-1 at 300 K) and low absorption for hard X-rays. Grating structures were fabricated on free-standing CVD diamond of 10 µm thickness with 500 µm silicon substrate support. The grating structures were produced by electron-beam lithography at the Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, Switzerland. The grating lines were etched to a depth of 1.2 µm, resulting in an aspect ratio of 16. The characterization measurements with X-rays were performed on transmissive diamond gratings of 150 nm pitch at the P10 beamline of PETRA III, DESY. In this paper, the gratings are briefly described, and a measured diffraction efficiency of 0.75% at 6 keV in the first-order diffraction is shown; the variation of the diffraction efficiency across the grating surface is presented.

9.
Opt Express ; 23(21): 27990-7, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26480457

ABSTRACT

We report on the characterization of a multilayer Laue lens (MLL) with large acceptance, made of a novel WSi2/Al bilayer system. Fabrication of multilayers with large deposition thickness is required to obtain MLL structures with sufficient apertures capable of accepting the full lateral coherence length of x-rays at typical nanofocusing beamlines. To date, the total deposition thickness has been limited by stress-buildup in the multilayer. We were able to grow WSi2/Al with low grown-in stress, and asses the degree of stress reduction. X-ray diffraction experiments were conducted at beamline 1-BM at the Advanced Photon Source. We used monochromatic x-rays with a photon energy of 12 keV and a bandwidth of ΔE/E=5.4·10(-4). The MLL was grown with parallel layer interfaces, and was designed to have a large focal length of 9.6 mm. The mounted lens was 2.7 mm in width. We found and quantified kinks and bending of sections of the MLL. Sections with bending were found to partly have a systematic progression in the interface angles. We observed kinking in some, but not all, areas. The measurements are compared with dynamic diffraction calculations made with Coupled Wave Theory. Data are plotted showing the diffraction efficiency as a function of the external tilting angle of the entire mounted lens. This way of plotting the data was found to provide an overview into the diffraction properties of the whole lens, and enabled the following layer tilt analyses.

10.
Opt Express ; 22(12): 14041-53, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24977503

ABSTRACT

Transverse coherence of the x-ray beam from a bending magnet source was studied along multiple directions using a 2-D π/2 phase grating by measuring interferogram visibilities at different distances behind the grating. These measurements suggest that the preferred measuring orientation of a 2-D checkerboard grating is along the diagonal directions of the square blocks, where the interferograms have higher visibility and are not sensitive to the deviation of the duty cycle of the grating period. These observations are verified by thorough wavefront propagation simulations. The accuracy of the measured coherence values was also validated by the simulation and analytical results obtained from the source parameters. In addition, capability of the technique in probing spatially resolved local transverse coherence is demonstrated.

11.
J Synchrotron Radiat ; 21(Pt 4): 662-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24971959

ABSTRACT

The micro-focusing performance for hard X-rays of a fixed-geometry elliptical Kirkpatrick-Baez (K-B) mirrors assembly fabricated, tested and finally implemented at the micro-probe beamline 8-BM of the Advanced Photon Source is reported. Testing of the K-B mirror system was performed at the optics and detector test beamline 1-BM. K-B mirrors of length 80 mm and 60 mm were fabricated by profile coating with Pt metal to produce focal lengths of 250 mm and 155 mm for 3 mrad incident angle. For the critical angle of Pt, a broad bandwidth of energies up to 20 keV applies. The classical K-B sequential mirror geometry was used, and mirrors were mounted on micro-translation stages. The beam intensity profiles were measured by differentiating the curves of intensity data measured using a wire-scanning method. A beam size of 1.3 µm (V) and 1.2 µm (H) was measured with monochromatic X-rays of 18 keV at 1-BM. After installation at 8-BM the measured focus met the design requirements. In this paper the fabrication and metrology of the K-B mirrors are reported, as well as the focusing performances of the full mirrors-plus-mount set-up at both beamlines.

12.
J Synchrotron Radiat ; 17(5): 644-52, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20724786

ABSTRACT

Micro-focusing optical devices at synchrotron beamlines usually have a limited acceptance, but more flux can be intercepted if such optics are used to focus secondary sources created by the primary optics. Flux throughput can be maximized by placing the secondary focusing optics close to or exactly at the secondary source position. However, standard methods of beamline optics analysis, such as the lens equation or matching the mirror surface to an ellipse, work poorly when the source-to-optics distance is very short. In this paper the general characteristics of the focusing of beams with Gaussian profiles by a ;thin lens' are analysed under the paraxial approximation in phase space, concluding that the focusing of a beam with a short source-to-optics distance is distinct from imaging the source; slope errors are successfully included in all the formulas so that they can be used to calculate beamline focusing with good accuracy. A method is also introduced to use the thin-lens result to analyse the micro-focusing produced by an elliptically bent trapezoid-shaped Kirkpatrick-Baez mirror. The results of this analysis are in good agreement with ray-tracing simulations and are confirmed by the experimental results of the secondary focusing at the 18-ID Bio-CAT beamline (at the APS). The result of secondary focusing carried out at 18-ID using a single-bounce capillary can also be explained using this phase-space analysis. A discussion of the secondary focusing results is presented at the end of this paper.


Subject(s)
Optics and Photonics/methods , Synchrotrons/instrumentation , Lenses
SELECTION OF CITATIONS
SEARCH DETAIL
...