Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 127: 866-874, 2023 May.
Article in English | MEDLINE | ID: mdl-36522114

ABSTRACT

Liquid-liquid extraction (LLE) using ionic liquids (ILs)-based methods to remove perfluoroalkyl chemicals (PFACs), such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), from wastewater, is an important strategy. However, the lack of physicochemical and LLE data limits the selection of the most suitable ILs for the extraction of PFACs. In this work, 1763 ILs for PFACs extraction from water were systematically screened using COSMOtherm to estimate the infinite dilution activity coefficient (lnγ∞)of PFOA and PFOS in water and ILs. To evaluate the accuracy of COSMOtherm, 8 ILs with various lnγ∞ values were selected, and their extraction efficiency (E) and distribution coefficient (Dexp) were measured experimentally. The results showed that the predicted lnγ∞ decreased as the increase of experimental extraction efficiency of PFOA or PFOS, while the tendency of predicted distribution coefficient (Dpre) was consistent with the experimental (Dexp) results. This work provides an efficient basis for selecting ILs for the extraction of PFACs from wastewater.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Ionic Liquids , Wastewater , Caprylates , Water
2.
Environ Sci Technol ; 56(20): 14409-14417, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36173643

ABSTRACT

Electrochemical advanced oxidation processes (EAOPs) are promising technologies for perfluorooctanoic acid (PFOA) degradation, but the mechanisms and preferred pathways for PFOA mineralization remain unknown. Herein, we proposed a plausible primary pathway for electrochemical PFOA mineralization using density functional theory (DFT) simulations and experiments. We neglected the unique effects of the anode surface and treated anodes as electron sinks only to acquire a general pathway. This was the essential first step toward fully revealing the primary pathway applicable to all anodes. Systematically exploring the roles of valence band holes (h+), hydroxyl radicals (HO•), and H2O, we found that h+, whose contribution was previously underestimated, dominated PFOA mineralization. Notably, the primary pathway did not generate short-chain perfluoroalkyl carboxylic acids (PFCAs), which were previously thought to be the main degradation intermediates, but generated other polyfluorinated alkyl substances (PFASs) that were rapidly degraded upon formation. Also, we developed a simplified kinetic model, which considered all of the main processes (mass transfer with electromigration included, surface adsorption/desorption, and oxidation on the anode surface), to simulate PFOA degradation in EAOPs. Our model can predict PFOA concentration profiles under various current densities, initial PFOA concentrations, and flow velocities.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Caprylates/chemistry , Carboxylic Acids , Electrodes , Fluorocarbons/analysis , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Electrochemical Techniques
3.
J Hazard Mater ; 404(Pt B): 124091, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33212410

ABSTRACT

Polyfluoroalkyl Substances (PFAS) such as perfluorooctanoic acid (PFOA) are resistant to biodegradation leading to adverse health outcomes. Therefore, PFAS removal from drinking water is paramount. Liquid-liquid extraction processes can remove them from water; however, the hydrophobic and oleophobic properties of PFOA lead to the low extraction efficiency and severe emulsification, especially for the ppm-levels concentration of PFOA. Therefore, we introduced ionic liquid (IL) methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([A336][NTf2]) as extractant into octanol. We found that using hexadecyl trimethyl ammonium bromide (CTAB) as an extractant caused severe and stable emulsion. In comparison, [A336][NTf2] could suppress the emulsification with high extraction efficiency. The extraction performance of PFOA was examined as a function of various parameters. The results showed that the extraction efficiency was strongly dependent on the concentration of IL and aqueous pH. Further research revealed the extraction mechanisms at the molecular-level, and density functional theory (DFT) and molecular dynamic (MD) simulation agreed with the trends in the experiment. We determined that the extraction efficiency of PFOA from water could be up to 88.21 wt% for the optimized condition, indicating that the extraction system of [A336][NTf2] + octanol was efficient for separating PFOA from the diluted aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...