Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(27): 29410-29421, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005782

ABSTRACT

The "green synthesis" of nanoparticles (NPs) offers cost-effective and environmentally friendly advantages over chemical synthesis by utilizing biological sources such as bacteria, algae, fungi, or plants. In this context, cyanobacteria and their components are valuable sources to produce various NPs. The present study describes the comparative analysis of physicochemical and antibacterial properties of chemically synthesized (Chem-AgNPs) and cyanobacteria Spirulina platensis-derived silver NPs (Splat-AgNPs). The physicochemical characterization applying complementary dynamic light scattering and transmission electron microscopy revealed that Splat-AgNPs have an average hydrodynamic radius of ∼ 28.70 nm and spherical morphology, whereas Chem-AgNPs are irregular-shaped with an average radius size of ∼ 53.88 nm. The X-ray diffraction pattern of Splat-AgNPs confirms the formation of face-centered cubic crystalline AgNPs by "green synthesis". Energy-dispersive spectroscopy analysis demonstrated the purity of the Splat-AgNPs. Fourier transform infrared spectroscopy analysis of Splat-AgNPs demonstrated the involvement of some functional groups in the formation of NPs. Additionally, Splat-AgNPs demonstrated high colloidal stability with a zeta-potential value of (-50.0 ± 8.30) mV and a pronounced bactericidal activity against selected Gram-positive (Enterococcus hirae and Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Salmonella typhimurium) bacteria compared with Chem-AgNPs. Furthermore, our studies toward understanding the action mechanism of NPs showed that Splat-AgNPs alter the permeability of bacterial membranes and the energy-dependent H+-fluxes via FoF1-ATPase, thus playing a crucial role in bacterial energetics. The insights gained from this study show that Spirulina-derived synthesis is a low-cost, simple approach to producing stable AgNPs for their energy-metabolism-targeted antibacterial applications in biotechnology and biomedicine.

2.
Membranes (Basel) ; 14(4)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38668118

ABSTRACT

Pervaporation is a membrane-based process used for the separation of liquid mixtures. As this membrane process is governed by the differences in the sorption and diffusivities of separated components, close boiling mixtures and azeotropic mixtures can effectively be separated. The dehydration of ethanol is the most common application of hydrophilic pervaporation. The pilot scale properties of hydrophilic composite poly(vinyl alcohol) PVA membrane (PERVAPTM 2200) in contact with wet raw bioethanol are presented. The wet raw bioethanol was composed of ethanol (82.4-89.6 wt%), water (5.9-8.5 wt%), methanol (2.3-6.9 wt%), cyclohexane (0.2-2.4 wt%), higher alcohols (0.2-1.3 wt%), and acetaldehyde (0.004-0.030 wt%). All experiments were performed using a SULZER ECO-001 plant equipped with a 1.5 m2 membrane module. The efficiency of the dehydration process (i.e., membrane selectivity, permeate flux, degree of dehydration) was discussed as a function of the following parameters: the feed temperature, the feed composition, and the feed flow rate through the module. It was found that the low feed flow rate influenced the dehydration efficiency as the enthalpy of evaporation caused a high temperature drop in the module (around 25 °C at a feed flow rate equal to 5 kg h-1). The separation coefficient during pervaporation was in the range of 600-1200, depending on the feed composition. The increase in temperature augmented the permeation flux and shortened the time needed to reach the assumed level of dehydration. It was revealed that dehydration by pervaporation using ECO-001 pilot plant is an efficient process, allowing also to investigate the influence of various parameters on the process efficiency.

3.
Nanomaterials (Basel) ; 13(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37887921

ABSTRACT

The distinctive cage-like structure of polyhedral oligomeric silsesquioxane (POSS) materials makes them highly effective fillers in composite membranes for separation applications. However, realizing their full potential in the application often requires specific surface functionalization with various groups. However, this requirement remains challenging owing to the limitations of wet-chemistry approaches, which frequently result in the generation of hazardous chemical by-products. In this paper, a "green" stirring plasma strategy is presented for the functionalization of octa-methyl POSS sub-micron particles into designable oxygen-containing functional groups using a low-pressure oxygen plasma from combined continuous wave and pulsed (CW+P) modes. Plasma from oxygen gas with CW mode offers highly oxygen-reactive species to continuously etch and activate the surface of the POSS. The resulting pulsed plasma assists in grafting more reactive oxygen species onto the active methyl groups of the POSS to form specific oxygen-containing functional groups including hydroxyl and carboxyl. A precise control of nearly one hydroxyl or one carboxyl group at the corner of the cage structure of the POSS is demonstrated, without damaging the core. Therefore, the plasma process discussed in this work is suggested by the authors as controllable fundamental research for the surface functionalization of sub-micron particles, promoting a more environmentally friendly pathway for the preparation of designable fillers.

4.
Membranes (Basel) ; 13(6)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37367797

ABSTRACT

The use of ionic liquid-based membranes as polymer electrolyte membranes for fuel cell applications increases significantly due to the major features of ionic liquids (i.e., high thermal stability and ion conductivity, non-volatility, and non-flammability). In general, there are three major methods to introduce ionic liquids into the polymer membrane, such as incorporating ionic liquid into a polymer solution, impregnating the polymer with ionic liquid, and cross-linking. The incorporation of ionic liquids into a polymer solution is the most common method, owing to easy operation of process and quick membrane formation. However, the prepared composite membranes suffer from a reduction in mechanical stability and ionic liquid leakage. While mechanical stability may be enhanced by the membrane's impregnation with ionic liquid, ionic liquid leaching is still the main drawback of this method. The presence of covalent bonds between ionic liquids and polymer chains during the cross-linking reaction can decrease the ionic liquid release. Cross-linked membranes reveal more stable proton conductivity, although a decrease in ionic mobility can be noticed. In the present work, the main approaches for ionic liquid introduction into the polymer film are presented in detail, and the recently obtained results (2019-2023) are discussed in correlation with the composite membrane structure. In addition, some promising new methods (i.e., layer-by-layer self-assembly, vacuum-assisted flocculation, spin coating, and freeze drying) are described.

5.
Foods ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37048342

ABSTRACT

Color is the prime feature directly associated with the consumer's attraction and choice of their food. The flavor, safety, and nutritional value of any food product are directly associated with the food color. Natural and synthetic colorants (dyes and pigments) have diversified applications in various sectors such as food, feed, pharmaceutical, textiles, cosmetics, and others. Concerning the food industry, different types of natural and synthetic colorants are available in the market. Synthetic food colorants have gained popularity as they are highly stable and cheaply available. Consumers worldwide prefer delightful foodstuffs but are more concerned about the safety of the food. After its disposal, the colloidal particles present in the synthetic colorants do not allow sunlight to penetrate aquatic bodies. This causes a foul smell and turbidity formation and gives a bad appearance. Furthermore, different studies carried out previously have presented the toxicological, carcinogenic effects, hypersensitivity reactions, and behavioral changes linked to the usage of synthetic colorants. Natural food colorings, however, have nutraceutical qualities that are valuable to human health such as curcumin extracted from turmeric and beta-carotene extracted from carrots. In addition, natural colorants have beneficial properties such as excellent antioxidant properties, antimutagenic, anti-inflammatory, antineoplastic, and antiarthritic effects. This review summarizes the sources of natural and synthetic colorants, their production rate, demand, extraction, and characterization of food colorants, their industrial applications, environmental impact, challenges in the sustainable utilization of natural colorants, and their prospects.

6.
Clean Technol Environ Policy ; 25(1): 281-298, 2023.
Article in English | MEDLINE | ID: mdl-36128053

ABSTRACT

The following article explains the current condition of the photovoltaics sector both in Poland and worldwide. Recently, a rapid development of solar energy has been observed in Poland and is estimated that the country now has about 700,000 photovoltaics prosumers. In October 2021, the total photovoltaics power in Poland amounted to nearly 5.7 GW. The calculated technical potential of photovoltaics in Poland is 153.484 PJ (42.634 TWh). This would cover 26.04% of Poland's electricity needs. The main aim of the article is to assess the level of development of the photovoltaic market in Poland, the genesis of its creation, description of the current situation and determination of the development opportunities. As part of the aim, programs supporting the development of solar energy in Poland have been described and the SWOT analysis has also been performed. The strengths of photovoltaics include high social acceptance and low costs of photovoltaics system operation, while opportunities include rapidly increasing technological efficiency and decreasing cost of solar systems. On the other hand, weaknesses include the high costs of photovoltaics systems and the disparities in the amount of solar energy reaching the market during the year, whereas climate change and the coronavirus pandemic are threats. In 2020, PV became an investment hit in the energy sector and an economic driver in Poland. In the difficult time of two lockdowns caused by the global pandemic, domestic PV made a significant contribution to the maintenance of investment processes in the amount of PLN 9.5 billion and provided Poland with 35 thousand jobs. In 2020, 1.5% of the country's electricity came from PV sources. In 2021, it will be 3.5%, and by 2025, solar energy will provide approx. 10% of Poland's electricity. It is worth examining the development of photovoltaics from a broad and long-term perspective. The spectacular development of photovoltaics in Poland is due to hitting the right time window and reducing technology costs, but most of all, it is based on the cooperation of stakeholders and trust in the regulatory environment.

7.
RSC Adv ; 12(45): 29124-29136, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36320736

ABSTRACT

MIL-101 (Fe) and MIL-GO composites were successfully synthesized and used as fillers for the preparation of Pebax® 2533/PVDF thin film MMMs for CO2/N2 separation. The defect-free Pebax® 2533/PVDF thin film MMMs were fabricated by casting the Pebax solution containing fillers on the PVDF support. The presence of GO nanosheets in the reaction solution did not destroy the crystal structure of MIL-101 (Fe). However, the BET surface area and total pore volume of MIL-GO decreased dramatically, comparing with MIL-101 (Fe). The incorporation of MIL-GO-2 into Pebax matrix simultaneously increased the CO2 permeability and the CO2/N2 ideal selectivity of Pebax® 2533/PVDF thin film MMMs mainly owing to the porous structure of MIL-GO-2, and the tortuous diffusion pathways created by GO nanosheets. MMMs containing 9.1 wt% MIL-GO-2 exhibited the highest CO2 permeability equal to 303 barrer (1 barrer = 10-10 cm3 (STP) cm cm-2 s-1 cmHg-1) and the highest CO2/N2 ideal selectivity equal to 24. Pebax-based MMMs containing composite fillers showed higher gas separation performance than the Pebax-based MMMs containing single filler (GO or MOFs). Therefore, the synthesis and utilization of 3D@2D composite filler demonstrated great potential in the preparation of high-performance MMMs for gas separation processes.

8.
Foods ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36360034

ABSTRACT

Bread is a staple food and can be a potential product to be enriched with various deficient nutrients. The objective of the study was to characterize the nutritional properties of toasted bread enriched with 10% and 20% of kale and wholemeal bread with 20% and 40% of spinach. The supplementation increased the phenolic content up to 2−3 times in the bread with the addition of 20% spinach and 40% kale. The highest antioxidant properties were noticed in extracts of bread with 20% kale. The in vitro digestion released the hydrophilic and lipophilic antioxidative compounds, leading to higher bioaccessibility of the breads enriched with these selected green vegetables. Even more than a 2-fold increase in folate content was observed in breads with the greatest addition of kale (20%) and spinach (40%), from 18.1 to 45.3 µg/100 g and from 37.2 to 83.2 µg/100 g, respectively, compared to the non-enriched breads. Breads with spinach showed significantly (P < 0.05) higher contents of all of the tested minerals, Cu, Mn, Fe, Zn, Mg, Ca, Na, K, and P, whereas kale enriched breads showed most of them. The results suggest that the addition of fresh green vegetables can enhance the daily supply of micronutrients and significantly increase the bioavailability of bioactive compounds with high antioxidant status.

9.
Heliyon ; 8(9): e10468, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36105478

ABSTRACT

Cr (VI) compounds are the most dangerous for human health and the environment, therefore, the study of their adsorption features is of great interest. A comprehensive study of the adsorption of Cr (VI) ions on the surface of Chlorella vulgaris ZBS1 algae cells was carried out evaluating the effect of the pH of the medium on the degree of removal of Cr (VI) ions from solutions and on the zeta potential of the cell surface was. The highest values of the degree of removal of Cr (VI) ions equal to 94.6-95.4% are achieved in the pH range of 1-2, being the result of the electrostatic attraction of HCrO4 - groups to protonated amino groups of the cell surface and the possibility of reducing Cr (VI) ions to Cr (III) in an acidic medium, followed by the formation of Cr (III) ions of coordination bonds with amine and carboxyl groups of algae cells. The adsorption data were processed within the framework of Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models. It was shown that the maximum Langmuir adsorption value was 74.63 mg/g. The values of the adsorption parameters 1/n and K f in the Freundlich model were equal to 0.713 and 2.82 mg/g. In the Dubinin-Radushkevich model, the maximum adsorption capacity (qm) and free energy (E) were equal to 39.73 mg/g and 2.604 kJ/mol, respectively. Whereas, according to the Temkin model, the constant A was equal to 18.215 L/mg, and bT was equal to 0.023 kJ/mol. Taking into account the low values of free energy, it is concluded that adsorption is caused by non-covalent interactions. The study of adsorption kinetics showed that the adsorption of Cr (VI) ions on the surface of Chlorella vulgaris ZBS1 algae cells is described in the framework of the pseudo-second order model. The kinetic behavior of the process is discussed in the framework of the IPDM and ELM models. With increasing temperature, the constant of intraparticle diffusion of Cr (VI) ions decreases, which is explained with increasing of hydrophobic interactions between nonpolar sites of protein macromolecules and polysaccharides in the composition of algae cells. The increase in the adsorption of Cr (VI) ions at pH 8.62 in the temperature range of 298-353 K is justified by the shrinkage of the biosorbent volume, which leads to the blocking of a part of the anionic groups on the surface of algae cells. Therefore, the decrease in the electrostatic repulsion between the negatively charged surface of the adsorbent and Cr (VI) oxyanions is observed.

10.
Membranes (Basel) ; 12(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35323791

ABSTRACT

Porous polyamide-6 membranes were fabricated via a non-solvent induced phase inversion method, and the influence of gelation time on the properties of the membranes was investigated. Membrane samples with various gelation times were prepared. The evaluation of the membranes' properties was carried out by various analyses and tests, such as scanning electron microscopy, atomic force microscopy, contact angle, wet and dry thickness, mean pore size measurements, porosity, water uptake, mechanical resistance, hydrodynamic water fluxes, membrane hydrodynamic permeability, and retention testing. The scanning electron microscopy images (both surface and cross-section) demonstrated that the increase in gelation time from 0 (M0) to 10 (M10) min led to the morphological change of membranes from isotropic (M0) to anisotropic (M10). The wet and dry thickness of the membranes showed a downward tendency with increasing gelation time. The M0 membrane exhibited the lowest bubble contact angle of 60 ± 4° and the lowest average surface roughness of 124 ± 22 nm. The highest values of mean pore size and porosity were observed for the M0 sample (0.710 ± 0.06 µm and 72 ± 2%, respectively), whereas the M10 membrane demonstrated the highest tensile strength of 4.1 MPa. The membrane water uptake was diminished from 62 to 39% by increasing the gelation time from 0 to 10 min. The M0 membrane also showed the highest hydrodynamic water flux among the prepared membranes, equal to 28.6 L m-2 h-1 (at Δp = 2 bar).

11.
Membranes (Basel) ; 12(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35323818

ABSTRACT

The mass production of lithium-ion batteries and lithium-rich e-products that are required for electric vehicles, energy storage devices, and cloud-connected electronics is driving an unprecedented demand for lithium resources. Current lithium production technologies, in which extraction and purification are typically achieved by hydrometallurgical routes, possess strong environmental impact but are also energy-intensive and require extensive operational capabilities. The emergence of selective membrane materials and associated electro-processes offers an avenue to reduce these energy and cost penalties and create more sustainable lithium production approaches. In this review, lithium recovery technologies are discussed considering the origin of the lithium, which can be primary sources such as minerals and brines or e-waste sources generated from recycling of batteries and other e-products. The relevance of electro-membrane processes for selective lithium recovery is discussed as well as the potential and shortfalls of current electro-membrane methods.

12.
Materials (Basel) ; 15(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35057388

ABSTRACT

A strategy for the bioconjugation of the enzyme Candida antarctica lipase B onto titania ceramic membranes with varied pore sizes (15, 50, 150, and 300 kDa) was successfully performed. The relationship between the membrane morphology, i.e.,the pore size of the ceramic support, and bioconjugation performance was considered. Owing to the dimension of the enzyme (~33 kDa), the morphology of the ceramics allowed (50, 150, and 300 kDa) or did not allow (15 kDa) the entrance of the enzyme molecules into the porous structure. Such a strategy made it possible to better understand the changes in the material (morphology) and physicochemical features (wettability, adhesiveness, and surface charge) of the samples, which were systematically examined. The silane functionalization and enzyme immobilization were accomplished via the covalent route. The samples were characterized after each stage of the modification, which was very informative from the material point of view. As a consequence of the modification, significant changes in the contact angle, roughness, adhesion, and zeta potential were observed. For instance, for the 50 kDa membrane, the contact angle increased from 29.1 ± 1.5° for the pristine sample to 72.3 ± 1.5° after silane attachment; subsequently, it was reduced to 57.2 ± 1.5° after the enzyme immobilization. Finally, the contact angle of the bioconjugated membrane used in the enzymatic process rose to 92.9 ± 1.5°. By roughness (Sq) controlling, the following amendments were noticed: for the pristine 50 kDa membrane, Sq = 1.87 ± 0.21 µm; after silanization, Sq = 2.33 ± 0.30 µm; after enzyme immobilization, Sq = 2.74 ± 0.26 µm; and eventually, after the enzymatic process, Sq = 2.37 ± 0.27 µm. The adhesion work of the 50 kDa samples was equal to 136.41 ± 2.20 mN m-1 (pristine membrane), 94.93 ± 2.00 mN m-1 (with silane), 112.24 ± 1.90 mN m-1 (with silane and enzyme), and finally, 69.12 ± 1.40 mN m-1 (after the enzymatic process). The materials and physicochemical features changed substantially, particularly after the application of the membrane in the enzymatic process. Moreover, the impact of ceramic material morphology on the zeta potential value is here presented for the first time. With an increase in the ceramic support cut-off, the amount of immobilized lipase rose, but the specific productivity was higher for membranes possessing smaller pores, owing to the higher grafting density. For the enzymatic process, two modes of accomplishment were selected, i.e., stirred-tank and cross-flow. The latter method was characterized by a much higher effectiveness, with a resulting productivity equal to 99.7 and 60.3 µmol h-1 for the 300 and 15 kD membranes, respectively.

13.
Int J Mol Sci ; 22(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34769183

ABSTRACT

Materials based on PVDF with desirable and controllable features were successfully developed. The chemistry and roughness were adjusted to produce membranes with improved transport and separation properties. Membranes were activated using the novel piranha approach to generate OH-rich surfaces, and finally furnished with epoxy and long-alkyl moieties via stable covalent attachment. The comprehensive materials characterization provided a broad spectrum of data, including morphology, textural, thermal properties, and wettability features. The defined materials were tested in the air-gap membrane distillation process for desalination, and improvement compared with pristine PVDF was observed. An outstanding behavior was found for the PVDF sample equipped with long-alkyl chains. The generated membrane showed an enhancement in the transport of 58-62% compared to pristine. A relatively high contact angle of 148° was achieved with a 560 nm roughness, producing a highly hydrophobic material. On the other hand, it was possible to tone the hydrophobicity and significantly reduce adhesion work. All materials were highly stable during the long-lasting separation process and were characterized by excellent effectiveness in water desalination.


Subject(s)
Membranes, Artificial , Water Purification , Water/chemistry , Epoxy Resins/chemistry
14.
Sci Total Environ ; 801: 149647, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34467928

ABSTRACT

Enzyme immobilization is a well-known method for the improvement of enzyme reusability and stability. To achieve very high effectiveness of the enzyme immobilization, not only does the method of attachment need to be optimized, but the appropriate support must be chosen. The essential necessities addressed to the support applied for enzyme immobilization can be focused on the material features as well as on the stability and resistances in certain conditions. Ceramic membranes and nanoparticles are the most widespread supports for enzyme immobilization. Hence, the immobilization of enzymes on ceramic membrane and nanoparticles are summarized and discussed. The important properties of the supports are particle size, pore structure, active surface area, volume to surface ratio, type and number of reactive available groups, as well as thermal, mechanical, and chemical stability. The modifiers and the crosslinkers are crucial to the enzyme loading amount, the chemical and physical stability, and the reusability and catalytical activity of the immobilized enzymes. Therefore, the chemical and physical methods of modification of ceramic materials are presented. The most popular and used modifiers (e.g. APTES, CPTES, VTES) as well as activating agents (GA, gelatin, EDC and/or NHS) applied to the grafting process are discussed. Moreover, functional groups of enzymes are presented and discussed since they play important roles in the enzyme immobilization via covalent bonding. The enhanced physical, chemical, and catalytical properties of immobilized enzymes are discussed revealing the positive balance between the effectiveness of the immobilization process, preservation of high enzyme activity, its good stability, and relatively low cost.


Subject(s)
Ceramics , Enzymes, Immobilized , Particle Size
15.
Molecules ; 26(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34299436

ABSTRACT

There has been an ongoing need to develop polymer materials with increased performance as proton exchange membranes (PEMs) for middle- and high-temperature fuel cells. Poly(vinyl alcohol) (PVA) is a highly hydrophilic and chemically stable polymer bearing hydroxyl groups, which can be further altered. Protic ionic liquids (proticILs) have been found to be an effective modifying polymer agent used as a proton carrier providing PEMs' desirable proton conductivity at high temperatures and under anhydrous conditions. In this study, the novel synthesis route of PVA grafted with fluorinated protic ionic liquids bearing sulfo groups (-SO3H) was elaborated. The polymer functionalization with fluorinated proticILs was achieved by the following approaches: (i) the PVA acylation and subsequent reaction with fluorinated sultones and (ii) free-radical polymerization reaction of vinyl acetate derivatives modified with 1-methylimidazole and sultones. These modifications resulted in the PVA being chemically modified with ionic liquids of protic character. The successfully grafted PVA has been characterized using 1H, 19F, and 13C-NMR and FTIR-ATR. The presented synthesis route is a novel approach to PVA functionalization with imidazole-based fluorinated ionic liquids with sulfo groups.

16.
ACS Appl Mater Interfaces ; 13(31): 37893-37903, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34319693

ABSTRACT

Wetting of metal surfaces plays an important role in fuel cells, corrosion science, and heat-transfer devices. It has been recently stipulated that Cu surface is hydrophobic. In order to address this issue we use high purity (1 1 1) Cu prepared without oxygen, and resistant to oxidation. Using the modern Fringe Projection Phase-Shifting method of surface roughness determination, together with a new cell allowing the vacuum and thermal desorption of samples, we define the relation between the copper surface roughness and water contact angle (WCA). Next by a simple extrapolation, we determine the WCA for the perfectly smooth copper surface (WCA = 34°). Additionally, the kinetics of airborne hydrocarbons adsorption on copper was measured. It is shown for the first time that the presence of surface hydrocarbons strongly affects not only WCA, but also water droplet evaporation and the temperature of water droplet freezing. The different behavior and features of the surfaces were observed once the atmosphere of the experiment was changed from argon to air. The evaporation results are well described by the theoretical framework proposed by Semenov, and the freezing process by the dynamic growth angle model.

17.
Materials (Basel) ; 14(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204567

ABSTRACT

Membrane separation technology can used to capture carbon dioxide from flue gas. However, plenty of research has been focused on the flat sheet mixed matrix membrane rather than the mixed matrix thin film hollow fiber membranes. In this work, mixed matrix thin film hollow fiber membranes were fabricated by incorporating amine functionalized UiO-66 nanoparticles into the Pebax® 2533 thin selective layer on the polypropylene (PP) hollow fiber supports via dip-coating process. The attenuated total reflection-Fourier transform infrared (ATR-FTIR), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX) mapping analysis, and thermal analysis (TGA-DTA) were used to characterize the synthesized UiO-66-NH2 nanoparticles. The morphology, surface chemistry, and the gas separation performance of the fabricated Pebax® 2533-UiO-66-NH2/PP mixed matrix thin film hollow fiber membranes were characterized by using SEM, ATR-FTIR, and gas permeance measurements, respectively. It was found that the surface morphology of the prepared membranes was influenced by the incorporation of UiO-66 nanoparticles. The CO2 permeance increased along with an increase of UiO-66 nanoparticles content in the prepared membranes, while the CO2/N2 ideal gas selectively firstly increased then decreased due to the aggregation of UiO-66 nanoparticles. The Pebax® 2533-UiO-66-NH2/PP mixed matrix thin film hollow fiber membranes containing 10 wt% UiO-66 nanoparticles exhibited the CO2 permeance of 26 GPU and CO2/N2 selectivity of 37.

18.
Int J Mol Sci ; 22(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063925

ABSTRACT

Today, the use of polymer electrolyte membranes (PEMs) possessing ionic liquids (ILs) in middle and high temperature polymer electrolyte membrane fuel cells (MT-PEMFCs and HT-PEMFCs) have been increased. ILs are the organic salts, and they are typically liquid at the temperature lower than 100 °C with high conductivity and thermal stability. The membranes containing ILs can conduct protons through the PEMs at elevated temperatures (more than 80 °C), unlike the Nafion-based membranes. A wide range of ILs have been identified, including chiral ILs, bio-ILs, basic ILs, energetic ILs, metallic ILs, and neutral ILs, that, from among them, functionalized ionic liquids (FILs) include a lot of ion exchange groups in their structure that improve and accelerate proton conduction through the polymeric membrane. In spite of positive features of using ILs, the leaching of ILs from the membranes during the operation of fuel cell is the main downside of these organic salts, which leads to reducing the performance of the membranes; however, there are some ways to diminish leaching from the membranes. The aim of this review is to provide an overview of these issues by evaluating key studies that have been undertaken in the last years in order to present objective and comprehensive updated information that presents the progress that has been made in this field. Significant information regarding the utilization of ILs in MT-PEMFCs and HT-PEMFCs, ILs structure, properties, and synthesis is given. Moreover, leaching of ILs as a challenging demerit and the possible methods to tackle this problem are approached in this paper. The present review will be of interest to chemists, electrochemists, environmentalists, and any other researchers working on sustainable energy production field.


Subject(s)
Electrolytes/chemistry , Ionic Liquids/chemistry , Polymers/chemistry , Animals , Electric Conductivity , Hot Temperature , Humans , Membranes, Artificial , Protons
19.
ACS Appl Mater Interfaces ; 13(9): 11268-11283, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33645982

ABSTRACT

Highly effective, hybrid separation materials for water purification were generated following a bioinspired system available in nature. The desert beetle was the inspiration for the generation of separation materials. Using the hydrophobic poly(vinylidene fluoride) (PVDF) membrane as the basis, the membrane was first activated and then furnished with silane-based linkers, and the covalent anchoring of chitosan was successfully accomplished. The obtained surface architecture was a copy of the desert beetle's armor possessing a hydrophobic matrix with hydrophilic domains. The modification was done in the presence or the lack of catalyst (N,N-diisopropylethylamine) that made it possible to tune easily wettability, roughness, and material as well as adhesive features. The membrane morphology and surface chemistry were studied by applying a series of analytical techniques. As a result of chitosan attachment, substantial improvement in transport and separation was reported. Pristine PVDF was characterized by a water flux of 5.28 kg m-2 h-1 and an activation energy of 48.16 kJ mol-1. The water flux and activation energy for a hybrid membrane with chitosan were equal to 15.55 kg m-2 h-1 and 33.98 kJ mol-1, respectively. The hybrid materials possessed enhanced stability and water resistance that were maintained after 10 cycles of membrane distillation tests.


Subject(s)
Biomimetic Materials/chemistry , Membranes, Artificial , Polyvinyls/chemistry , Silanes/chemistry , Water Purification/methods , Water/chemistry , Animals , Coleoptera/chemistry , Distillation/instrumentation , Distillation/methods , Elastic Modulus , Hydrophobic and Hydrophilic Interactions , Water Purification/instrumentation , Wettability
20.
Polymers (Basel) ; 13(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670985

ABSTRACT

The development of thin layer on hollow-fiber substrate has drawn great attention in the gas-separation process. In this work, polydimethysiloxane (PDMS)/polyetherimide (PEI) hollow-fiber membranes were prepared by using the dip-coating method. The prepared membranes were characterized by Scanning Electron Microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and gas permeance measurements. The concentration of PDMS solution and coating time revealed an important influence on the gas permeance and the thickness of the PDMS layer. It was confirmed from the SEM and EDX results that the PDMS layer's thickness and the atomic content of silicon in the selective layer increased with the growth in coating time and the concentration of PDMS solution. The composite hollow-fiber membrane prepared from 15 wt% PDMS solution at 10 min coating time showed the best gas-separation performance with CO2 permeance of 51 GPU and CO2/N2 ideal selectivity of 21.

SELECTION OF CITATIONS
SEARCH DETAIL
...