Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sports (Basel) ; 9(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34678915

ABSTRACT

Exosomal microRNA (miRNA) in plasma and urine has attracted attention as a novel diagnostic tool for pathological conditions. However, the mechanisms of miRNA dynamics in the exercise physiology field are not well understood in terms of monitoring sports performance. This pilot study aimed to reveal the miRNA dynamics in urine and plasma of full-marathon participants. Plasma and urine samples were collected from 26 marathon participants before, immediately after, 2 h after, and one day after a full marathon. The samples were pooled, and exosomal miRNAs were extracted and analyzed using next-generation sequencing. We determined that the exosomal miRNA expression profile changed under time dependency in full marathon. New uncharacterized exosomal miRNAs such as hsa-miR-582-3p and hsa-miR-199a-3p could be potential biomarkers reflecting physical stress of full marathon in plasma and urine. In addition, some muscle miRNAs in plasma and urine have supported the utility for monitoring physical stress. Furthermore, some inflammation-related exosomal miRNAs were useful only in plasma. These results suggest that these exosomal miRNAs in plasma and/or urine are highly sensitive biomarkers for physical stress in full marathons. Thus, our findings may yield valuable insights into exercise physiology.

2.
Genes (Basel) ; 12(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946330

ABSTRACT

Plasma cell-free DNA (cfDNA) is frequently analyzed using liquid biopsy to investigate cancer markers. We hypothesized that this concept might be applicable in exercise physiology. Here, we aimed to identify specific cfDNA (spcfDNA) sequences in the plasma of healthy humans using next-generation sequencing (NGS) and clearly define the dynamics regarding spcfDNA-fragment levels upon extreme exercises, such as running a full marathon. NGS analysis was performed using cfDNA of pooled plasma collected from healthy participants. We confirmed that the TaqMan-qPCR assay had high sensitivity and found that the spcfDNA sequence abundance was 16,600-fold higher than that in a normal genomic region. We then used the TaqMan-qPCR assay to investigate the dynamics of spcfDNA-fragment levels upon running a full marathon. The spcfDNA fragment levels were significantly increased post-marathon. Furthermore, spcfDNA fragment levels were strongly correlated with white blood cell and plasma myoglobin concentrations. These results suggest the spcfDNA fragments identified in this study were highly sensitive as markers of extreme physical stress. The findings of this study may provide new insights into exercise physiology and genome biology in humans.


Subject(s)
Cell-Free Nucleic Acids/blood , Marathon Running/physiology , Adult , Biomarkers/blood , Humans , Male
3.
Mol Med Rep ; 23(3)2021 03.
Article in English | MEDLINE | ID: mdl-33495844

ABSTRACT

Progression of nonalcoholic steatohepatitis (NASH) is attributed to several factors, including inflammation and oxidative stress. In recent years, renalase has been reported to suppress oxidative stress, apoptosis and inflammation. A number of studies have suggested that renalase may be associated with protecting the liver from injury. The present study aimed to clarify the effects of renalase knockout (KO) in mice with NASH that were induced with a choline­deficient high­fat diet (CDAHFD) supplemented with 0.1% methionine. Wild type (WT) and KO mice (6­week­old) were fed a normal diet (ND) or CDAHFD for 6 weeks, followed by analysis of the blood liver function markers and liver tissues. CDAHFD intake was revealed to increase blood hepatic function markers, lipid accumulation and oxidative stress compared with ND, but no significant differences were observed between the WT and KO mice. However, in the KO­CDAHFD group, the Adgre1 and Tgfb1 mRNA levels were significantly higher, and α­SMA expression was significantly lower compared with the WT­CDAHFD group. Furthermore, the Gclc mRNA and phosphorylated protein kinase B (Akt) levels were significantly lower in the KO­ND group compared with the WT­ND group. The results of the current study indicated that as NASH progressed in the absence of renalase, oxidative stress, macrophage infiltration and TGF­ß expression were enhanced, while α­SMA expression in NASH may be partly suppressed due to the decreased phosphorylation of Akt level.


Subject(s)
Gene Expression Regulation , Liver Cirrhosis, Experimental , Monoamine Oxidase/deficiency , Non-alcoholic Fatty Liver Disease , Signal Transduction , Animals , Biomarkers/metabolism , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Mice , Mice, Knockout , Monoamine Oxidase/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology
4.
Nutrients ; 12(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198295

ABSTRACT

The World Health Organization has recommended 5 g/day as dietary reference intakes for salt. In Japan, the averages for men and women were 11.0 g/day and 9.3 g/day, respectively. Recently, it was reported that amounts of sodium accumulation in skeletal muscles of older people were significantly higher than those in younger people. The purpose of this study was to investigate whether the risk of sarcopenia with decreased muscle mass and strength was related to the amount of salt intake. In addition, we investigated its involvement with renalase. Four groups based on age and salt intake ("younger low-salt," "younger high-salt," "older low-salt," and "older high-salt") were compared. Stratifying by age category, body fat percentage significantly increased in high-salt groups in both younger and older people. Handgrip strength/body weight and chair rise tests of the older high-salt group showed significant reduction compared to the older low-salt group. However, there was no significant difference in renalase concentrations in plasma. The results suggest that high-salt intake may lead to fat accumulation and muscle weakness associated with sarcopenia. Therefore, efforts to reduce salt intake may prevent sarcopenia.


Subject(s)
Aging/physiology , Muscle, Skeletal/physiology , Sarcopenia/prevention & control , Sodium Chloride, Dietary/administration & dosage , Aged , Body Composition/physiology , Cystatin C/blood , Female , Hand Strength/physiology , Humans , Interleukin-6/blood , Japan , Linear Models , Male , Middle Aged , Multivariate Analysis , Sodium Chloride/urine , Surveys and Questionnaires
5.
Biomedicines ; 8(3)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164328

ABSTRACT

The aim of this study was to clarify degradation characteristics in each tissue of the knee complex of a medial meniscectomy (MMx)-induced knee osteoarthritis (KOA) animal model using classical methods and an alternative comprehensive evaluation method called contrast-enhanced X-ray micro-computed tomography (CEX-µCT), which was developed in the study. Surgical MMx was performed in the right knee joints of five male Wistar rats to induce KOA. At four weeks post-surgery, the synovitis was evaluated using quantitative polymerase chain reaction (qPCR). Degradations of the articular cartilage of the tibial plateau were evaluated using classical methods and CEX-µCT. Evaluation of the synovitis demonstrated significantly increased expression levels of inflammation-associated marker genes in MMx-treated knees compared with those in sham-treated knees. Evaluation of the articular cartilage using classical methods showed that MMx fully induced degradation of the cartilage. Evaluation using CEX-µCT showed that local areas of the medial cartilage of the tibial plateau were significantly reduced in MMx-treated knees compared with those in sham-treated knees. On the other hand, total cartilage volumes were significantly increased in MMx-treated knees. On the basis of the findings of this study, the method could be relevant to study new treatments in KOA research.

6.
PeerJ ; 8: e8595, 2020.
Article in English | MEDLINE | ID: mdl-32140302

ABSTRACT

BACKGROUND: With the rapid progress of genetic engineering and gene therapy methods, the World Anti-Doping Agency has raised concerns regarding gene doping, which is prohibited in sports. However, there is no standard method available for detecting transgenes delivered by injection of naked plasmids. Here, we developed a detection method for detecting transgenes delivered by injection of naked plasmids in a mouse model that mimics gene doping. METHODS: Whole blood from the tail tip and one piece of stool were used as pre-samples of injection. Next, a plasmid vector containing the human erythropoietin (hEPO) gene was injected into mice through intravenous (IV), intraperitoneal (IP), or local muscular (IM) injection. At 1, 2, 3, 6, 12, 24, and 48 h after injection, approximately 50 µL whole blood was collected from the tail tip. One piece of stool was collected at 6, 12, 24, and 48 h. From each sample, total DNA was extracted and transgene fragments were analyzed by Taqman quantitative PCR (qPCR) and SYBR green qPCR. RESULTS: In whole blood DNA samples evaluated by Taqman qPCR, the transgene fragments were detected at all time points in the IP sample and at 1, 2, 3, 6, and 12 h in the IV and IM samples. In the stool-DNA samples, the transgene fragments were detected at 6, 12, 24, and 48 h in the IV and IM samples by Taqman qPCR. In the analysis by SYBR green qPCR, the transgene fragments were detected at some time point in both specimens; however, many non-specific amplicons were detected. CONCLUSIONS: These results indicate that transgene fragments evaluated after each injection method of naked plasmids were detected in whole-blood and stool DNA samples. These findings may facilitate the development of methods for detecting gene doping.

SELECTION OF CITATIONS
SEARCH DETAIL
...