Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 16(37): 19984-92, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25160913

ABSTRACT

In recent years, organometal halide perovskite-based solid-state hybrid solar cells have attracted unexpected increasing interest because of their high efficiency (the record power conversion efficiency has been reported to be over 15%) and low fabrication cost. It has been accepted that the high efficiency was mainly attributed to the strong optical absorption (absorption coefficient: 15,000 cm(-1) at 550 nm) over a broader range (up to 800 nm) and the long lifetimes of photoexcited charge carriers (in the order of 10 ns - a few 100 ns) of the perovskite absorbers. However, much of the fundamental photophysical properties of perovskite relating to the high photovoltaic performance are remained to be investigated. The charge separation and recombination processes at the material interfaces are particularly important for solar cell performances. To better understand the high efficiency of perovskite solar cells, we systematically investigated the charge separation (electron and hole injection) and charge recombination dynamics of CH3NH3PbClI2 hybrid solar cells employing TiO2 nanostructures as the electron transfer material (ETM) and spiro-OMeTAD as the hole transfer material (HTM). The measurements were carried out using transient absorption (TA) techniques on a time scale from sub-picoseconds to milliseconds. We clarified the timescales of electron injection, hole injection, and recombination processes in TiO2/CH3NH3PbClI2/spiro-OMeTAD solar cells. Charge separation and collection efficiency of the perovskite-based solar cells were discussed. In addition, the effect of TiO2 size on the charge separation and recombination dynamics was also investigated. It was found that all TiO2-based perovskite solar cells possessed similar charge separation processes, but quite different recombination dynamics. Our results indicate that charge recombination was crucial to the performance of the perovskite solar cells, which could be effectively suppressed through optimising nanostructured TiO2 films and surface passivation, thus pushing these cells to even higher efficiency.

2.
Chemphyschem ; 15(6): 1062-9, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24604610

ABSTRACT

The relationship between the structure of the charge-separation interface and the photovoltaic performance of all-solid dye-sensitized solar cells is reported. This cell is composed of porous a TiO2/perovskite (CH3NH3PbI(x)Cl(3-x))/p-type organic conductor. The porous titania layer was passivated with Al2O3 or Y2O3 to remove surface traps of the porous titania layer. Both passivations were effective in increasing the efficiency of the solar cell. Especially, the effect of Y2O3 passivation was remarkable. After passivation, the efficiency increased from 6.59 to 7.5%. The increase in the efficiency was discussed in terms of the electron lifetime in TiO2, the thermally stimulated current, the measurement of the microwave refractive carrier lifetime, and transition absorption spectroscopy. It was proven that surface passivation resulted in retardation of charge recombination between the electrons in the porous titania layers and the holes in the p-type organic conductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...