Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 387(1): 24-38, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22939255

ABSTRACT

Titanomagnetite (Fe(3-x)Ti(x)O(4)) nanoparticles were synthesized by room temperature aqueous precipitation, in which Ti(IV) replaces Fe(III) and is charge compensated by conversion of Fe(III) to Fe(II) in the unit cell. A comprehensive suite of tools was used to probe composition, structure, and magnetic properties down to site-occupancy level, emphasizing distribution and accessibility of Fe(II) as a function of x. Synthesis of nanoparticles in the range 0≤x≤0.6 was attempted; Ti, total Fe and Fe(II) content were verified by chemical analysis. TEM indicated homogeneous spherical 9-12 nm particles. µ-XRD and Mössbauer spectroscopy on anoxic aqueous suspensions verified the inverse spinel structure and Ti(IV) incorporation in the unit cell up to x≤0.38, based on Fe(II)/Fe(III) ratio deduced from the unit cell edge and Mössbauer spectra. Nanoparticles with a higher value of x possessed a minor amorphous secondary Fe(II)/Ti(IV) phase. XANES/EXAFS indicated Ti(IV) incorporation in the octahedral sublattice (B-site) and proportional increases in Fe(II)/Fe(III) ratio. XA/XMCD indicated that increases arise from increasing B-site Fe(II), and that these charge-balancing equivalents segregate to those B-sites near particle surfaces. Dissolution studies showed that this segregation persists after release of Fe(II) into solution, in amounts systematically proportional to x and thus the Fe(II)/Fe(III) ratio. A mechanistic reaction model was developed entailing mobile B-site Fe(II) supplying a highly interactive surface phase that undergoes interfacial electron transfer with oxidants in solution, sustained by outward Fe(II) migration from particle interiors and concurrent inward migration of charge-balancing cationic vacancies in a ratio of 3:1.

2.
Water Res ; 44(14): 4015-28, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20541787

ABSTRACT

There is a growing need for a better understanding of the biogeochemical dynamics involved in microbial U(VI) reduction due to an increasing interest in using biostimulation via electron donor addition as a means to remediate uranium contaminated sites. U(VI) reduction has been observed to be maximized during iron-reducing conditions and to decrease upon commencement of sulfate-reducing conditions. There are many unknowns regarding the impact of iron/sulfate biogeochemistry on U(VI) reduction. This includes Fe(III) availability as well as the microbial community changes, including the activity of iron-reducers during the uranium biostimulation period even after sulfate reduction becomes dominant. Column experiments were conducted with Old Rifle site sediments containing Fe-oxides, Fe-clays, and sulfate rich groundwater. Half of the columns had sediment that was augmented with small amounts of Fe(III) in the form of (57)Fe-goethite, allowing for a detailed tracking of minute changes of this added phase to study the effects of increased Fe(III) levels on the overall biostimulation dynamics. Mössbauer spectroscopy showed that the added (57)Fe-goethite was bioreduced only during the first thirty days of biostimultuion, after which it remained constant. Augmentation with Fe(III) had a significant effect on the total flux of electrons towards different electron acceptors; it suppressed the degree of sulfate reduction, had no significant impact on Geobacter-type bacterial numbers but decreased the bacterial numbers of sulfate reducers and affected the overall microbial community composition. The addition of Fe(III) had no noticeable effect on the total uranium reduction.


Subject(s)
Biodegradation, Environmental , Iron/chemistry , Sulfates/chemistry , Uranium/metabolism , Bacteria/metabolism , Decontamination/methods , Iron/pharmacology , Iron Compounds , Minerals , Oxidation-Reduction , Sulfates/pharmacology
3.
Environ Sci Technol ; 42(15): 5499-506, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18754467

ABSTRACT

Under oxic conditions, Tc exists as the soluble, weakly sorbing pertechnetate [TcO4-] anion. The reduced form of technetium, Tc(IV), is stable in anoxic environments and is sparingly soluble as TcO2 x nH2O(s). Here we investigate the heterogeneous reduction of Tc(VII) by Fe(II) adsorbed on Al (hydr)oxides [diaspore (alpha-AlOOH) and corundum (alpha-Al2O3)]. Experiments were performed to study the kinetics of Tc(VII) reduction, examine changes in Fe surface speciation during Tc(VII) reduction (Mössbauer spectroscopy), and identify the nature of Tc(IV)-containing reaction products (X-ray absorption spectroscopy). We found that Tc(VII) was completely reduced by adsorbed Fe(II) within 11 (diaspore suspension) and 4 days (corundum suspension). Mössbauer measurements revealed thatthe Fe(II) signal became less intense with Tc(VII) reduction and was accompanied by an increase in the intensity of the Fe(III) doublet and magnetically ordered Fe(III) sextet signals. Tc-EXAFS spectroscopy revealed that the final heterogeneous redox product on corundum was similar to Tc(IV) oxyhydroxide, TcO2 x nH2O.


Subject(s)
Aluminum Oxide/chemistry , Iron Compounds/chemistry , Iron/chemistry , Spectroscopy, Mossbauer/methods , Spectrum Analysis/methods , Technetium/chemistry , Absorption , Cations , Kinetics , Oxidation-Reduction , X-Rays
4.
Environ Sci Technol ; 35(4): 703-12, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11349281

ABSTRACT

The reductive biotransformation of a Ni(2+)-substituted (5 mol %) hydrous ferric oxide (NiHFO) by Shewanella putrefaciens, strain CN32, was investigated under anoxic conditions at circumneutral pH. Our objectives were to define the influence of Ni2+ substitution on the bioreducibility of the HFO and the biomineralization products formed and to identify biogeochemical factors controlling the phase distribution of Ni2+ during bioreduction. Incubations with CN32 and NiHFO were sampled after 14 and 32 d, and both aqueous chemistry and solid phases were characterized. By comparison of these results with a previous study (Fredrickson, J. K.; Zachara, J. M.; Kennedy, D. W.; Dong, H.; Onstott, T. C.; Hinman, N. W.; Li, S. W. Geochim. Cosmochim. Acta 1998, 62, 3239-3257), it was concluded that coprecipitated/sorbed Ni2+ inhibited the bioreduction of HFO through an undefined chemical mechanism. Mössbauer spectroscopy allowed analysis of the residual HFO phase and the identity and approximate mass percent of biogenic mineral phases. The presence of AQDS, a soluble electron shuttle that obviates need for cell--oxide contact, was found to counteract the inhibiting effect of Ni2+. Nickel was generally mobilized during bioreduction in a trend that correlated with final pH, except in cases where PO4(3-) was present and vivianite precipitation occurred. CN32 promoted the formation of Ni(2+)-substituted magnetite (Fe2IIIFe(1-x)IINixIIO4) in media with AQDS but without PO4(3-). The formation of this biogenic coprecipitate, however, had little discernible impact on final aqueous Ni2+ concentrations. These results demonstrate that coprecipitated Ni can inhibit dissimilatory microbial reduction of amorphous iron oxide, but the presence of humic acids may facilitate the immobilization of Ni within the crystal structure of biogenic magnetite.


Subject(s)
Ferric Compounds/metabolism , Nickel/chemistry , Shewanella putrefaciens/physiology , Biotransformation , Humic Substances/metabolism , Hypoxia , Water Pollutants, Chemical/metabolism
5.
Waste Manag ; 21(4): 335-41, 2001.
Article in English | MEDLINE | ID: mdl-11300533

ABSTRACT

The corrosion layer on steel surfaces that formed after exposure to waste isolation pilot plant (WIPP) brines under anoxic conditions was characterized for chemical composition, thickness and phase composition. The chemical composition of the corrosion layer was determined both by X-ray photoelectron spectroscopy (XPS) and by chemical analysis of acid solutions used to remove the corrosion layer. Atomic force microscopic (AFM) images indicated that the brine-corroded surface layer shows extensive granulation along the contours of the steel surface that is characteristic of sharp polishing marks. The corrosion layer seemed to be porous and could be dissolved and detached in dilute hydrochloric acid. The corrosion layer appears to be composed of iron oxides with some ionic substitutions from the brines. The 77 K Mössbauer spectrum recorded for iron powder leached under similar conditions indicated the corrosion layer was comprised principally of green rust.


Subject(s)
Ferric Compounds/analysis , Refuse Disposal/instrumentation , Salts/chemistry , Steel/chemistry , Corrosion , Ferric Compounds/chemistry , Hydrochloric Acid/chemistry , Metals/analysis , Microscopy, Atomic Force , Radioactive Waste , Refuse Disposal/methods , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...