Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 11993, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491559

ABSTRACT

When designing wheelchair propulsion systems operated with the upper limb, there is a noticeable lack of ergonomic analyses informing about the areas on the wheelchair frame where hand-operated controls can be installed. With that in mind, a research goal was set to measure the areas of human hand reach within the area defined by the structural elements of a manual wheelchair. An ergonomic analysis was performed on a group of ten patients representing 50% of anthropometric dimensions. Motion capture and image analysis software based on the openCV library were used for the measurement. The conducted research resulted in the development of a map of the hands range in the lateral plane of the wheelchair, parallel to the sagittal plane. In addition, the map was divided into three zones of hand reach, taking into account various levels of comfort of hand manipulation. The total hand reach area was 1269 mm long and 731 mm high, while the most comfortable manipulation area was 352 mm long and 649 mm high. The plotted hands reach areas act as a map informing the designer where on the sagittal plane additional accessories operated by the user can be installed.


Subject(s)
Ergonomics , Wheelchairs , Humans , Equipment Design , Upper Extremity , Software , Biomechanical Phenomena
2.
Materials (Basel) ; 15(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36556546

ABSTRACT

The aim of this research was to define the compression strength of polylactic acid bolts produced using the fused deposition modelling method. In accomplishing this, static and cyclic compression tests for different metric thread sizes were carried out in accordance with ISO 4014. Tests were conducted on M42, M48, M56, M60, and M64 threads, while samples with three different types of pitch-one nominal and two fine threads-were prepared for each diameter. Standard ISO 604 for defining the compression modulus Ec was implemented as the test basis. Accordingly, the mean compression modulus value Ec for all measurements was 917.79 ± 184.99 MPa. Cyclic compression tests were then carried out on samples with the M64 × 4 thread. Fifty thread loading cycles were carried out for each variant to obtained different strain amplitude values and strain frequencies. Our work indicated that the values of the storage modulus defined in cyclic tests E' increased, while the values of the loss modulus E″ decreased when the value of the strain frequency increased. We found it not possible to determine the nature of the changes in the value of the storage modulus E' in the function of the strain amplitude. We did, however, observe an increase in the value of the loss modulus E″, together with the increase in the tested range of the strain amplitude. The determined mechanical values can be therefore be used for designing threaded connections made of polylactic acid using the fused deposition modelling method.

3.
Sci Rep ; 12(1): 19061, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351954

ABSTRACT

Self-propelling a wheelchair up a hill requires intense muscular effort and introduces the risk of the wheelchair rolling down. The purpose of this paper was to assess the user's muscular activity during ramp climbing. Tests were carried out on a group of 10 subjects who had to propel a wheelchair up a standardized wheelchair ramp. Basic parameters of upper limb kinematics were measured to determine the total push-rim rotation angle. This was 105.91° for a wheelchair with a stiff anti-rollback system, 99.39° for a wheelchair without an anti-rollback system and 98.18° for a wheelchair with a flexible anti-rollback system. The upper limb muscle effort was measured at 55 ± 19% for the wheelchair without an anti-rollback system, 59 ± 19% for the wheelchair with a stiff anti-rollback system and 70 ± 46% for the wheelchair with a flexible anti-rollback system. The conducted research showed an increase in muscle effort while using anti-rollback systems. In the case of push-rim rotation angle, no significant differences in the value of the rotation angle were found.


Subject(s)
Wheelchairs , Humans , Biomechanical Phenomena , Upper Extremity/physiology , Architectural Accessibility , Range of Motion, Articular/physiology
5.
Environ Sci Pollut Res Int ; 29(37): 55928-55943, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35325380

ABSTRACT

The development and operation of road infrastructure require machines and equipment driven by low-powered internal combustion engines. In this study, we conducted emission tests on five small spark-ignition engines. We used the most popular commercial design on the market, the Lifan GX 390, with a carburettor power system, and another commercial power unit, the Honda iGX 390, with an innovative power system characterised by an electronically controlled carburettor flap. The remaining three tested constructions were proprietary solutions modernising the design of the Lifan GX 390 engine: one had an electronic injection and ignition system powered by gasoline, whereas the other two had systems powered by alternative fuels. Emission tests were conducted under identical operating conditions on an engine dynamometer complying with European Union guidelines (Regulation 2016/1628/EU). The results of the tests showed that the innovative solutions in most cases reduced CO, CO2 and hydrocarbon emissions but increased NOx compounds.


Subject(s)
Gasoline , Vehicle Emissions , Hydrocarbons
6.
Materials (Basel) ; 15(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35208095

ABSTRACT

In the processing of waste materials, attention must be given to the efficient use of energy. The pelletization of dry ice is a good example of such processes. A literature review shows that in the pelletizers available on the market, the force applied in the process is excessive. As a result, the efficiency of the utilization of inputs, including electricity and carbon dioxide, is at a very low level. This article presents the results of experimental research on the effect of the degree of dry ice compression on the value of the Poisson ratio. The first part of this article presents the research methodology and a description of the test stand, developed specifically for this research, bearing in mind the unique properties of carbon dioxide in the solid state. The results presented show the behavior of dry ice during compression in a rectangular chamber for different final densities of the finished product. As a result, it is possible to determine the values of the Poisson ratio as a function of density, using for this purpose four mathematical models. The findings of this research may be useful for research work focused on the further development of this process, such as by using the Drucker-Prager/Cap numerical model to optimize the geometric parameters of the parts and components of the main unit of the machine used in the extrusion process of dry ice.

7.
Materials (Basel) ; 14(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34947356

ABSTRACT

The efficiency of material consumption is an important consideration for production processes; this is particularly true for processes that use waste materials. Dry ice extrusion serves as a good example. An examination of the literature on this subject leads to an observation that the commercially available machines for dry ice compression are characterized by a high value of working force. Consequently, the effectiveness of the source consumption, electric energy and carbon dioxide, is very low. The subject of the experimental research presented in the article is the influence of the density of dry ice on the value of Young's modulus. The first part of the article presents the test methodology and the special test stand that was developed to accommodate the unique characteristics of solid-state carbon dioxide. The test results present the characteristics of compaction and relaxation used as the basis for determining the value of Young's modulus. Based on the test results obtained for various material density values, the characteristics of Young's modulus are developed and graphed as a function of the density. The presented results are important for furthering the research on the development of extrusion and compaction processes; for example, using the Drucker-Prager/Cap model for the purpose of optimizing the geometrical characteristics of the work assembly components.

8.
J Biomech Eng ; 143(8)2021 08 01.
Article in English | MEDLINE | ID: mdl-33764412

ABSTRACT

The aim of this research was to analyze the impact of the human body position changes caused by propelling a wheelchair with the pushrim propulsion on the value of motion resistance force. The discussed research works are in progress; therefore, the presented results should be treated as preliminary. The research was carried out in the group of six volunteers propelling a wheelchair of which frame was inclined, in respect to the horizontal plane, under the angle of 0 deg, 7 deg, and 14 deg. The area of the position variability of the human body center of gravity (COG) and the coefficients of wheelchair rolling resistance have been determined. Based on the measurements conducted, rolling resistance force FT and motion resistance force FR have been defined for three values of frame inclination angle. The determined force of rolling resistance Ft depended on the location of the COG of the human body and the value of the coefficients of rolling resistance of the front and rear wheels of a wheelchair. This force was a component of the resistance to motion FR, which also took into account the influence of gravity resulting from the inclination of the wheelchair on an inclined plane. For the tested inclination angles relative to the horizontal plane, the rolling resistance force ranged from 9.82 N to 22.81 N. Analyzing the variability of the rolling resistance force FT, it was found that for the final phase of the driving motion, it increased by 36% for the inclination angle of 0 deg and 43% for the inclination angle of 7 deg. Its increase was 48% for the inclination angle of 14 deg in relation to the human body position for the beginning of the driving motion. In the case of measuring the value of the resistance to motion FR, it was observed that, depending on the angle of the incline of the wheelchair, it ranged from 14.69 N to 256.33 N. The measurements conducted enabled the derivation of an analytical model for determining rolling resistance force depending on the position of the human body COG and the wheelchair inclination angle. The conducted research demonstrated the impact of the COG position on the changes of motion resistance force, thus expanding the state of knowledge, introducing a new parameter which, like a surface type and wheel type, affects motion resistances.


Subject(s)
Wheelchairs
9.
Disabil Rehabil Assist Technol ; 16(1): 9-16, 2021 01.
Article in English | MEDLINE | ID: mdl-31267792

ABSTRACT

PURPOSE: The objective of the study is to build a mathematical model that will be used to determine the value of the propulsions torque required to drive a human-wheelchair system under varied conditions. MATERIALS AND METHODS: To this end, the mechanics of the system's movement were described with equations taking into account forces acting on it. As a result forces acting on individual axles of the wheelchair's wheels were determined. This formed a basis for solving the developed model. In the next step experimental and literature based research was performed in order to determine values of the developed model's parameters. It was then introduced into the environment of numerical computation. As a result, we could carry out a number of simulations allowing us to trace propulsion torque curves for various driving conditions. RESULTS: This in turn was a basis on which a preliminary validation of the developed mathematical model was performed. CONCLUSIONS: Presented the mathematical model can be applied during work related to the design of manually propelled wheelchairs. Implications for Rehabilitation Work related to development of innovative designs of manual wheelchairs is important because the physical activity associated with propelling is enriching the rehabilitation process. Wheelchairs equipped with electric drive do not have this advantage. The developed dependences and results of conducted work, described in this article, are an added value in the area of both, theoretical research and practical engineering design concerning wheelchairs and their drive systems. Therefore, they expand the design possibilities for better matching the wheelchair with the individual needs of the disabled people. The possibility of adjusting selected solutions to individual needs allows to increase the effectiveness of active rehabilitation, related for example, to the possibility of practicing sports and other physical activities.


Subject(s)
Disabled Persons/rehabilitation , Equipment Design , Wheelchairs , Biomechanical Phenomena , Humans , Models, Theoretical , Torque
10.
Materials (Basel) ; 13(21)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121052

ABSTRACT

Materials characterized by magnetorheological properties are non-classic engineering materials. A significant increase in the interest of the scientific community about this group of materials could be observed over the recent years. The results of research presented in this article are oriented on the examination of the said materials' mechanical properties. Stress relaxation tests were carried out on cylindrical samples of magnetorheological elastomers loaded with compressive stress, for various values of magnetic induction (B1 = 0 mT, B2 = 32 mT, B3 = 48 mT, and B4 = 64 mT) and temperature (T1 = 25 °C, T2 = 30 °C, and T3 = 40 °C). The results of these tests indicate that the stiffness of the examined samples increased along with the increase of magnetic field induction, and decreased along with the increase of temperature. On this basis, it has been determined that: the biggest stress amplitude change, caused by the influence of magnetic field, was σ0ΔB = 12.7%, and the biggest stress amplitude change, caused by the influence of temperature, was σ0ΔT = 11.3%. As a result of applying a mathematical model, it was indicated that the stress relaxation in the examined magnetorheological elastomer, for the adopted time range (t = 3600 s), had a hyperbolic decline nature. The collected test results point to the examined materials being characterized by extensive rheological properties, which leads to the conclusion that it is necessary to conduct further tests in this area.

11.
PLoS One ; 14(12): e0226013, 2019.
Article in English | MEDLINE | ID: mdl-31809515

ABSTRACT

PURPOSE: The aim of this research is to establish whether, and to what extent, the tilt angle, gear ratio of the propulsion system and propulsion frequency of a wheelchair influence the position of the centre of gravity. Furthermore, it verifies the usefulness of such research using an original test stand. MATERIALS AND METHODS: The article presents the effects of three operational parameters of a wheelchair on the position of the centre of gravity of the human body. The study included 27 wheelchair propulsion tests of a wheelchair with pushrim propulsion using the following variable parameters: gear ratio of the propulsion system, propulsion frequency and wheelchair tilt angle. The position of the centre of gravity of the human body was measured in dynamic conditions at 100 Hz. The results were represented with ellipses defining the region of variability of the position of the centre of gravity of the human body. The coordinates of the centre of gravity were measured in relation to the reference system, with the start point at the centre of the axis of rotation of the rear wheelchair wheels. The measurements were taken in a horizontal plane in relation to the base on which the test stand was positioned. RESULTS: The research carried out shows that the inclination angle of the wheelchair has the greatest influence on position of the ellipse describing the position of the centre of gravity of the human body. By controlling the change in the inclination angle value in the range from 0° to 5.4°, the standard deviation of the length of the horizontal half-axis of the ellipse (SD a) equal to 31.2 mm was obtained. For comparison, by changing the frequency of pushes (40 to 50 pushes per minute) of the wheelchair at a constant inclination angle, the standard deviation of the horizontal half-axis length (SD a) equal to 8 mm was recorded. The results of the study show a change in the position of the centre of gravity of the human body in dynamic conditions. They are relative to the contact points of the wheelchair wheels with the ground. Using the dimensions of the plotted ellipses, one can determine the values of pressure that affect the wheelchair's individual wheels. Conclusions-Increasing the value of each aforementioned parameter resulted in the increase of strength required by the operator to propel the wheelchair. It directly influenced the position of the centre of gravity during the test.


Subject(s)
Gravitation , Wheelchairs , Biomechanical Phenomena , Equipment Design , Human Body , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...