Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rev ; 76(1): 142-193, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37940347

ABSTRACT

The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.


Subject(s)
Amino Acid Transport Systems, Neutral , Amino Acids, Neutral , COVID-19 , Humans , Amino Acid Transport Systems, Neutral/chemistry , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Kidney/metabolism , Amino Acids/metabolism , Amino Acids, Neutral/metabolism , COVID-19/metabolism , Membrane Transport Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
2.
Bioorg Chem ; 107: 104617, 2021 02.
Article in English | MEDLINE | ID: mdl-33444983

ABSTRACT

Two series of novel 1,3,4-thiadiazole-resorcinol conjugates were efficiently synthesized and evaluated as cholinesterases inhibitors. N-Butyl- and N-chlorophenyl-5-amino-1,3,4-thiadiazol-2-yl)benzene-1,3-diols were identified as the most promising compounds of low nanomolar activity against AChE (IC50 = 29-76 nM) and moderate activity against BuChE. The inhibition mechanism studies proved that the compounds are mixed type inhibitors. The docking simulations showed great affinity of the compounds for both enzymes. The modelled amine derivatives exhibited a similar arrangement in the catalytic anionic site of AChE similar to that of tacrine. The thiadiazole ring interacted with Trp84 and the phenyl groups created π-π stacking interactions with the residue - Phe330. The compounds showed better inhibition of the in vitro self-induced Aß (1-42) aggregation than that compared with curcumin as well as antioxidant properties similar to those of quercetin. They exhibited metal ion chelating properties, acceptable cytotoxicity in vitro and favourable ADMET profile determined in silico.


Subject(s)
Cholinesterase Inhibitors/chemistry , Resorcinols/chemistry , Thiadiazoles/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Antioxidants/chemistry , Binding Sites , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Catalytic Domain , Cell Line , Cell Survival/drug effects , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Humans , Kinetics , Molecular Docking Simulation , Protein Aggregates/drug effects
3.
Biomolecules ; 11(2)2021 01 27.
Article in English | MEDLINE | ID: mdl-33513955

ABSTRACT

Poisoning with organophosphorus compounds used as pesticides or misused as chemical weapons remains a serious threat to human health and life. Their toxic effects result from irreversible blockade of the enzymes acetylcholinesterase and butyrylcholinesterase, which causes overstimulation of the cholinergic system and often leads to serious injury or death. Treatment of organophosphorus poisoning involves, among other strategies, the administration of oxime compounds. Oximes reactivate cholinesterases by breaking the covalent bond between the serine residue from the enzyme active site and the phosphorus atom of the organophosphorus compound. Although the general mechanism of reactivation has been known for years, the exact molecular aspects determining the efficiency and selectivity of individual oximes are still not clear. This hinders the development of new active compounds. In our research, using relatively simple and widely available molecular docking methods, we investigated the reactivation of acetyl- and butyrylcholinesterase blocked by sarin and tabun. For the selected oximes, their binding modes at each step of the reactivation process were identified. Amino acids essential for effective reactivation and those responsible for the selectivity of individual oximes against inhibited acetyl- and butyrylcholinesterase were identified. This research broadens the knowledge about cholinesterase reactivation and demonstrates the usefulness of molecular docking in the study of this process. The presented observations and methods can be used in the future to support the search for new effective reactivators.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Reactivators/pharmacology , Molecular Docking Simulation , Animals , Catalytic Domain , Cluster Analysis , Enzyme Activation , Humans , Ligands , Mice , Models, Molecular , Organophosphates/chemistry , Oximes/chemistry , Phosphorus/chemistry , Protein Binding , Protein Biosynthesis , Protein Conformation , Quantum Theory , Sarin/chemistry
4.
Bioorg Chem ; 85: 209-220, 2019 04.
Article in English | MEDLINE | ID: mdl-30634096

ABSTRACT

Thymidine phosphorylase (TP) is over expressed in several solid tumors and its inhibition can offer unique target suitable for drug discovery in cancer. A series of 1,2,4-triazoles 3a-3l has been synthesized in good yields and subsequently inhibitory potential of synthesized triazoles 3a-3l against thymidine phosphorylase enzyme was evaluated. Out of these twelve analogs five analogues 3b, 3c, 3f, 3l and 3l exhibited a good inhibitory potential against thymidine phosphorylase. Inhibitory potential in term of IC50 values were found in the range of 61.98 ±â€¯0.43 to 273.43 ±â€¯0.96 µM and 7-Deazaxanthine was taken as a standard inhibitor with IC50 = 38.68 ±â€¯4.42 µM. Encouraged by these results, more analogues 1,2,4-triazole-3-mercaptocarboxylic acids 4a-4g were synthesized and their inhibitory potential against thymidine phosphorylase was evaluated. In this series, six analogues 4b-4g exhibited a good inhibitory potential in the range of 43.86 ±â€¯1.11-163.43 ±â€¯2.03 µM. Angiogenic response of 1,2,4-triazole acid 4d was estimated using the chick chorionic allantoic membrane (CAM) assay. In the light of these findings, structure activity relationship and molecular docking studies of selected triazoles to determine the key binding interactions was discussed. Docking studies demonstrate that synthesized analogues interacted with active site residues of thymidine phosphorylase enzyme through π-π stacking, thiolate and hydrogen bonding interactions.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Thymidine Phosphorylase/antagonists & inhibitors , Triazoles/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Catalytic Domain , Chickens , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Escherichia coli/enzymology , Hydrogels/chemistry , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Thymidine Phosphorylase/chemistry , Thymidine Phosphorylase/metabolism , Tissue Engineering/methods , Triazoles/chemical synthesis , Triazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...