Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Theor Biol ; 494: 110215, 2020 06 07.
Article in English | MEDLINE | ID: mdl-32112806

ABSTRACT

DNA recombinant processes can involve gene segments that overlap or interleave with gene segments of another gene. Such gene segment appearances relative to each other are called here gene segment organization. We use graphs to represent the gene segment organization in a chromosome locus. Vertices of the graph represent contigs resulting after the recombination and the edges represent the gene segment organization prior to rearrangement. To each graph we associate a vector whose entries correspond to graph properties, and consider this vector as a point in a higher dimensional Euclidean space such that cluster formations and analysis can be performed with a hierarchical clustering method. The analysis is applied to a recently sequenced model organism Oxytricha trifallax, a species of ciliate with highly scrambled genome that undergoes massive rearrangement process after conjugation. The analysis shows some emerging star-like graph structures indicating that segments of a single gene can interleave, or even contain all of the segments from fifteen or more other genes in between its segments. We also observe that as many as six genes can have their segments mutually interleaving or overlapping.


Subject(s)
Genome , Models, Genetic , Chromosomes/genetics , Gene Order , Genome/genetics , Oxytricha/genetics
2.
J Theor Biol ; 410: 171-180, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27593332

ABSTRACT

Some genera of ciliates, such as Oxytricha and Stylonychia, undergo massive genome reorganization during development and provide model organisms to study DNA rearrangement. A common feature of these ciliates is the presence of two types of nuclei: a germline micronucleus and a transcriptionally-active somatic macronucleus containing over 16,000 gene sized "nano-chromosomes". During conjugation the old parental macronucleus disintegrates and a new macronucleus forms from a copy of the zygotic micronucleus. During this process, macronuclear chromosomes assemble through DNA processing events that delete 90-98% of the DNA content of the micronucleus. This includes the deletion of noncoding DNA segments that interrupt precursor DNA regions in the micronucleus, as well as transposons and other germline-limited DNA. Each macronuclear locus may be present in the micronucleus as several nonconsecutive, permuted, and/or inverted DNA segments. Here we investigate the genome-wide range of scrambled gene architectures that describe all precursor-product relationships in Oxytricha trifallax, the first completely sequenced scrambled genome. We find that five general, recurrent patterns in the sets of scrambled micronuclear precursor pieces can describe over 80% of Oxytricha's scrambled genes. These include instances of translocations and inversions, and other specific patterns characterized by alternating stretches of consecutive odd and even DNA segments. Moreover, we find that iterating patterns of alternating odd-even segments up to four times can describe over 96% of the scrambled precursor loci. Recurrence of these highly structured genetic architectures within scrambled genes presumably reflects recurrent evolutionary events that gave rise to over 3000 of scrambled loci in the germline genome.


Subject(s)
Cell Nucleus/genetics , DNA, Protozoan/genetics , Gene Rearrangement , Genes, Protozoan , Models, Genetic , Oxytricha/genetics , Chromosomes/genetics
3.
Nucleic Acids Res ; 44(D1): D703-9, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26586804

ABSTRACT

Ciliated protists exhibit nuclear dimorphism through the presence of somatic macronuclei (MAC) and germline micronuclei (MIC). In some ciliates, DNA from precursor segments in the MIC genome rearranges to form transcriptionally active genes in the mature MAC genome, making these ciliates model organisms to study the process of somatic genome rearrangement. Similar broad scale, somatic rearrangement events occur in many eukaryotic cells and tumors. The (http://oxytricha.princeton.edu/mds_ies_db) is a database of genome recombination and rearrangement annotations, and it provides tools for visualization and comparative analysis of precursor and product genomes. The database currently contains annotations for two completely sequenced ciliate genomes: Oxytricha trifallax and Tetrahymena thermophila.


Subject(s)
Databases, Nucleic Acid , Gene Rearrangement , Genome , Oxytricha/genetics , Tetrahymena thermophila/genetics , Molecular Sequence Annotation , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...