Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 30(9): 1878-1888, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38451195

ABSTRACT

PURPOSE: Disruption of lipid bilayer asymmetry is a common feature observed in cancer cells and offers novel routes for therapeutic targeting. We used the natural immune receptor TIM-4 to interrogate for loss of plasma membrane phospholipid polarity in primary acute myelogenous leukemia (AML) samples and evaluated the anti-leukemic activity of TIM-4-L-directed T-cell therapy in preclinical AML models. EXPERIMENTAL DESIGN: We performed FACS analysis on 33 primary AML bone marrow specimens and correlated TIM-4-L expression frequency and intensity with molecular disease characteristics. Using Kasumi-1 and MV-4-11 AML cell lines, we further tested the anti-leukemic effects of TIM-4-L-directed engineered T cells in vitro and in vivo. RESULTS: We found that 86% of untreated AML blasts displayed upregulation of cell surface TIM-4-L. These observations were agnostic to AML genetic classification, as samples with mutations in TP53, ASXL1, and RUNX1 displayed TIM-4-L upregulation similar to that seen in favorable and intermediate subtypes. TIM-4-L dysregulation was also stably present in AML cell lines. To evaluate the potential of targeting upregulated TIM-4-L with adoptive T-cell therapy, we constructed TIM-4-L-directed engineered T cells, which demonstrated potent anti-leukemic effects, effectively eliminating AML cell lines with a range of endogenous TIM-4-L expression levels both in vitro and in vivo. CONCLUSIONS: These results highlight TIM-4-L as a highly prevalent target on AML across a range of genetic classifications and novel target for T-cell-based therapy in AML. Further investigations into the role of TIM-4-L in AML pathogenesis and its potential as an anti-leukemic target for clinical development are warranted.


Subject(s)
Leukemia, Myeloid, Acute , Membrane Proteins , T-Lymphocytes , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Mice , Animals , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Female , Male , Middle Aged , Adult , Aged , Immunotherapy, Adoptive/methods
2.
Mol Ther ; 31(7): 2132-2153, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37194236

ABSTRACT

To leverage complementary mechanisms for cancer cell removal, we developed a novel cell engineering and therapeutic strategy co-opting phagocytic clearance and antigen presentation activity into T cells. We engineered a chimeric engulfment receptor (CER)-1236, which combines the extracellular domain of TIM-4, a phagocytic receptor recognizing the "eat me" signal phosphatidylserine, with intracellular signaling domains (TLR2/TIR, CD28, and CD3ζ) to enhance both TIM-4-mediated phagocytosis and T cell cytotoxic function. CER-1236 T cells demonstrate target-dependent phagocytic function and induce transcriptional signatures of key regulators responsible for phagocytic recognition and uptake, along with cytotoxic mediators. Pre-clinical models of mantle cell lymphoma (MCL) and EGFR mutation-positive non-small cell lung cancer (NSCLC) demonstrate collaborative innate-adaptive anti-tumor immune responses both in vitro and in vivo. Treatment with BTK (MCL) and EGFR (NSCLC) inhibitors increased target ligand, conditionally driving CER-1236 function to augment anti-tumor responses. We also show that activated CER-1236 T cells exhibit superior cross-presentation ability compared with conventional T cells, triggering E7-specific TCR T responses in an HLA class I- and TLR-2-dependent manner, thereby overcoming the limited antigen presentation capacity of conventional T cells. Therefore, CER-1236 T cells have the potential to achieve tumor control by eliciting both direct cytotoxic effects and indirect-mediated cross-priming.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Adult , T-Lymphocytes , Cross-Priming , Phosphatidylserines , Antigens, Neoplasm , ErbB Receptors , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/genetics
3.
J Clin Med ; 12(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37048724

ABSTRACT

Vestibular schwannoma (VS) is an intracranial tumor that commonly presents with tinnitus and hearing loss. To uncover the molecular mechanisms underlying VS-associated tinnitus, we applied next-generation sequencing (Illumina HiSeq) to formalin-fixed paraffin-embedded archival VS samples from nine patients with tinnitus (VS-Tin) and seven patients without tinnitus (VS-NoTin). Bioinformatic analysis was used to detect differentially expressed genes (DEG; i.e., ≥two-fold change [FC]) while correcting for multiple comparisons. Using RNA-seq analysis, VS-Tin had significantly lower expression of GFAP (logFC = -3.04), APLNR (logFC = -2.95), PREX2 (logFC = -1.44), and PLVAP (logFC = -1.04; all p < 0.01) vs. VS-NoTin. These trends were validated by using real-time RT-qPCR. At the protein level, immunohistochemistry revealed a trend for less PREX2 and apelin expression and greater expression of NLRP3 inflammasome and CD68-positive macrophages in VS-Tin than in VS-NoTin, suggesting the activation of inflammatory processes in VS-Tin. Functional enrichment analysis revealed that the top three protein categories-glycoproteins, signal peptides, and secreted proteins-were significantly enriched in VS-Tin in comparison with VS-NoTin. In a gene set enrichment analysis, the top pathway was allograft rejection, an inflammatory pathway that includes the MMP9, CXCL9, IL16, PF4, ITK, and ACVR2A genes. Future studies are needed to examine the importance of these candidates and of inflammation in VS-associated tinnitus.

4.
Sci Rep ; 12(1): 6005, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35397616

ABSTRACT

Immune responses require delicate controls to maintain homeostasis while executing effective defense. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. The Krüppel-like factor 10 (KLF10) is a C2H2 zinc-finger containing transcription factor. The functions of mosquito AhR and KLF10 have not been characterized. Here we show that AhR and KLF10 constitute a transcriptional axis to modulate immune responses in mosquito Anopheles gambiae. The manipulation of AhR activities via agonists or antagonists repressed or enhanced the mosquito antibacterial immunity, respectively. KLF10 was recognized as one of the AhR target genes in the context. Phenotypically, silencing KLF10 reversed the immune suppression caused by the AhR agonist. The transcriptome comparison revealed that silencing AhR and KLF10 plus challenge altered the expression of 2245 genes in the same way. The results suggest that KLF10 is downstream of AhR in a transcriptional network responsible for immunomodulation. This AhR-KLF10 axis regulates a set of genes involved in metabolism and circadian rhythms in the context. The axis was required to suppress the adverse effect caused by the overactivation of the immune pathway IMD via the inhibitor gene Caspar silencing without a bacterial challenge. These results demonstrate that the AhR-KLF10 axis mediates an immunoregulatory transcriptional network as a negative loop to maintain immune homeostasis.


Subject(s)
Culicidae , Early Growth Response Transcription Factors , Animals , Culicidae/metabolism , Early Growth Response Transcription Factors/genetics , Homeostasis , Kruppel-Like Transcription Factors/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
5.
Ann Clin Transl Neurol ; 8(7): 1508-1514, 2021 07.
Article in English | MEDLINE | ID: mdl-34053190

ABSTRACT

Schwannomas are benign neoplasms that can cause gain- and loss-of-function neurological phenotypes, including severe, intractable pain. To investigate the molecular mechanisms underlying schwannoma-associated pain we compared the RNA sequencing profile of painful and non-painful schwannomas from NF2 patients. Distinct segregation of painful and non-painful tumors by gene expression patterns was observed. Differential expression analysis showed the upregulation of fibroblast growth factor 7 (FGF7) in painful schwannomas. Behavioral support for this finding was observed using a xenograft human NF2-schwannoma model in nude mice. In this model, over-expression of FGF7 in intra-sciatically implanted NF2 tumor cells generated pain behavior compared with controls.


Subject(s)
Fibroblast Growth Factor 7/genetics , Neurilemmoma/genetics , Neurofibromatosis 2/genetics , Pain/genetics , Sequence Analysis, RNA/methods , Transcriptome/genetics , Animals , Cell Line, Tumor , Female , Fibroblast Growth Factor 7/biosynthesis , Humans , Male , Mice , Mice, Nude , Neurilemmoma/metabolism , Neurilemmoma/pathology , Neurofibromatosis 2/metabolism , Neurofibromatosis 2/pathology , Pain/metabolism , Pain/pathology , Sciatic Neuropathy/genetics , Sciatic Neuropathy/metabolism , Sciatic Neuropathy/pathology , Xenograft Model Antitumor Assays/methods
6.
Pain ; 160(11): 2524-2534, 2019 11.
Article in English | MEDLINE | ID: mdl-31246732

ABSTRACT

A recently defined structure, the rostromedial tegmental nucleus (RMTg; aka tail of the ventral tegmental area [VTA]), has been proposed as an inhibitory control center for dopaminergic activity of the VTA. This region is composed of GABAergic cells that send afferent projections to the ventral midbrain and synapse onto dopaminergic cells in the VTA and substantia nigra. These cells exhibit µ-opioid receptor immunoreactivity, and in vivo, ex vivo, and optogenetic/electrophysiological approaches demonstrate that morphine excites dopamine neurons by targeting receptors on GABAergic neurons localized in the RMTg. This suggests that the RMTg may be a key modulator of opioid effects and a major brake regulating VTA dopamine systems. However, no study has directly manipulated RMTg GABAergic neurons in vivo and assessed the effect on nociception or opioid analgesia. In this study, multiplexing of GABAergic neurons in the RMTg was achieved using stimulatory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) and inhibitory kappa-opioid receptor DREADDs (KORD). Our data show that locally infused RMTg morphine or selective RMTg GABAergic neuron inhibition produces 87% of the maximal antinociceptive effect of systemic morphine, and RMTg GABAergic neurons modulate dopamine release in the nucleus accumbens. In addition, chemoactivation of VTA dopamine neurons significantly reduced pain behaviors both in resting and facilitated pain states and reduced by 75% the dose of systemic morphine required to produce maximal antinociception. These results provide compelling evidence that RMTg GABAergic neurons are involved in processing of nociceptive information and are important mediators of opioid analgesia.


Subject(s)
Analgesics, Opioid/pharmacology , Neural Pathways/drug effects , Tegmentum Mesencephali/drug effects , Ventral Tegmental Area/drug effects , Animals , Dopaminergic Neurons/drug effects , GABAergic Neurons/drug effects , Mice, Transgenic , Morphine/pharmacology , Nucleus Accumbens/drug effects , Receptors, Opioid/drug effects , Tegmentum Mesencephali/cytology , gamma-Aminobutyric Acid/pharmacology
7.
Parasit Vectors ; 8: 437, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26306887

ABSTRACT

BACKGROUND: The mosquito gut harbors a variety of bacteria that are dynamically associated with mosquitoes in various contexts. However, little is known about bacterial factors that affect bacterial inhabitation in the gut microbial community. Enterobacter sp. Ag1 is a predominant Gram negative bacterium in the mosquito midgut. METHODS: In a mutant library that was generated using transposon Tn5-mediated mutagenesis, a mutant was identified, in which the gene waaL was disrupted by the Tn5 insertion. The waaL encodes O antigen ligase, which is required for the attachment of O antigen to the outer core oligosaccharide of the lipopolysaccharide (LPS). RESULTS: The waaL(-) mutation caused the O antigen repeat missing in the LPS. The normal LPS structure was restored when the mutant was complemented with a plasmid containing waaL gene. The waaL(-) mutation did not affect bacterial proliferation in LB culture, the mutant cells grew at a rate the same as the wildtype (wt) cells. However, when waaL(-) strain were co-cultured with the wt strain or complemented strain, the mutant cells proliferated with a slower rate, indicating that the mutants were less competitive than wt cells in a community setting. Similarly, in a co-feeding assay, when fluorescently tagged wt strain and waaL(-) strain were orally co-introduced into the gut of Anopheles stephensi mosquitoes, the mutant cells were less prevalent in both sugar-fed and blood-fed guts. The data suggest that the mutation compromised the bacterial inhabitation in the gut community. Besides, the mutant was more sensitive to oxidative stress, demonstrated by lower survival rate upon exposure to 20 mM H2O2. CONCLUSION: Lack of the O antigen structure in LPS of Enterobacter compromised the effective growth in co-culture and co-feeding assays. In addition, O-antigen was involved in protection against oxidative stress. The findings suggest that intact LPS is crucial for the bacteria to steadily stay in the gut microbial community.


Subject(s)
Anopheles/microbiology , Bacterial Proteins/metabolism , Enterobacter/genetics , Enterobacter/metabolism , Gastrointestinal Tract/microbiology , Gene Expression Regulation, Bacterial/physiology , Animals , Bacterial Proteins/genetics , DNA Transposable Elements/genetics , Enterobacter/drug effects , Hydrogen Peroxide/pharmacology , Mutagenesis , Mutation , Oxidative Stress
8.
PLoS One ; 9(5): e97715, 2014.
Article in English | MEDLINE | ID: mdl-24842809

ABSTRACT

Elizabethkingia anophelis is a dominant bacterial species in the gut ecosystem of the malaria vector mosquito Anopheles gambiae. We recently sequenced the genomes of two strains of E. anophelis, R26T and Ag1, isolated from different strains of A. gambiae. The two bacterial strains are identical with a few exceptions. Phylogenetically, Elizabethkingia is closer to Chryseobacterium and Riemerella than to Flavobacterium. In line with other Bacteroidetes known to utilize various polymers in their ecological niches, the E. anophelis genome contains numerous TonB dependent transporters with various substrate specificities. In addition, several genes belonging to the polysaccharide utilization system and the glycoside hydrolase family were identified that could potentially be of benefit for the mosquito carbohydrate metabolism. In agreement with previous reports of broad antibiotic resistance in E. anophelis, a large number of genes encoding efflux pumps and ß-lactamases are present in the genome. The component genes of resistance-nodulation-division type efflux pumps were found to be syntenic and conserved in different taxa of Bacteroidetes. The bacterium also displays hemolytic activity and encodes several hemolysins that may participate in the digestion of erythrocytes in the mosquito gut. At the same time, the OxyR regulon and antioxidant genes could provide defense against the oxidative stress that is associated with blood digestion. The genome annotation and comparative genomic analysis revealed functional characteristics associated with the symbiotic relationship with the mosquito host.


Subject(s)
Anopheles/microbiology , Flavobacteriaceae/genetics , Genome, Bacterial/genetics , Insect Vectors/microbiology , Phylogeny , Animals , DNA Primers/genetics , Drug Resistance, Fungal/genetics , Gastrointestinal Tract/microbiology , Molecular Sequence Annotation , Species Specificity , Terpenes/metabolism
9.
Genome Announc ; 1(6)2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24309745

ABSTRACT

Elizabethkingia anophelis is a species in the family Flavobacteriaceae. It is a dominant resident in the mosquito gut and also a human pathogen. We present the draft genome sequences of two strains of E. anophelis, R26(T) and Ag1, which were isolated from the midgut of the malaria mosquito Anopheles gambiae.

10.
J Vis Exp ; (74)2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23608959

ABSTRACT

The mosquito gut accommodates dynamic microbial communities across different stages of the insect's life cycle. Characterization of the genetic capacity and functionality of the gut community will provide insight into the effects of gut microbiota on mosquito life traits. Metagenomic RNA-Seq has become an important tool to analyze transcriptomes from various microbes present in a microbial community. Messenger RNA usually comprises only 1-3% of total RNA, while rRNA constitutes approximately 90%. It is challenging to enrich messenger RNA from a metagenomic microbial RNA sample because most prokaryotic mRNA species lack stable poly(A) tails. This prevents oligo d(T) mediated mRNA isolation. Here, we describe a protocol that employs sample derived rRNA capture probes to remove rRNA from a metagenomic total RNA sample. To begin, both mosquito and microbial small and large subunit rRNA fragments are amplified from a metagenomic community DNA sample. Then, the community specific biotinylated antisense ribosomal RNA probes are synthesized in vitro using T7 RNA polymerase. The biotinylated rRNA probes are hybridized to the total RNA. The hybrids are captured by streptavidin-coated beads and removed from the total RNA. This subtraction-based protocol efficiently removes both mosquito and microbial rRNA from the total RNA sample. The mRNA enriched sample is further processed for RNA amplification and RNA-Seq.


Subject(s)
Anopheles/genetics , Anopheles/microbiology , RNA Probes , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Ribosomal/genetics , Animals , Digestive System/chemistry , Digestive System/microbiology , Metagenome , Nucleic Acid Hybridization/methods , RNA, Messenger/isolation & purification , Sequence Analysis, RNA
11.
J Bacteriol ; 194(19): 5449, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22965079

ABSTRACT

A Pseudomonas sp. bacterium was isolated from the midguts of Anopheles gambiae mosquitoes. Here we present the annotated Pseudomonas sp. draft genome sequence as a contribution to the efforts of characterization of the mosquito gut microbiome.


Subject(s)
Anopheles/microbiology , Genome, Bacterial , Pseudomonas/classification , Pseudomonas/genetics , Animals , Molecular Sequence Data
12.
J Bacteriol ; 194(19): 5481, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22965099

ABSTRACT

An isolate of Enterobacter sp. was obtained from the microbial community within the gut of the Anopheles gambiae mosquito, a major malaria vector in Africa. This genome was sequenced and annotated. The genome sequences will facilitate subsequent efforts to characterize the mosquito gut microbiome.


Subject(s)
Anopheles/microbiology , Enterobacter/classification , Enterobacter/genetics , Gastrointestinal Tract/microbiology , Genome, Bacterial , Animals , Molecular Sequence Data
13.
PLoS One ; 6(9): e24767, 2011.
Article in English | MEDLINE | ID: mdl-21957459

ABSTRACT

The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal) significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host.


Subject(s)
Anopheles/growth & development , Anopheles/microbiology , Gastrointestinal Tract/microbiology , Life Cycle Stages , Malaria/transmission , Metagenome , Animal Feed , Animals , Bacteria/genetics , Bacteria/isolation & purification , Female , Humans , Insect Vectors/growth & development , Insect Vectors/microbiology , Kenya , Laboratories , Metagenomics , Oxidation-Reduction , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...