Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 195: 108070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574781

ABSTRACT

We inventoried all nine species of the 'Acanthephyra purpurea' complex, one of the most abundant and cosmopolitan group of mesopelagic shrimps. We used 119 specimens at hand and genetic data for 124 specimens from GenBank and BOLD. Phylogenetic analysis of four genes (COI, 16S, NaK, and enolase) showed that the 'Acanthephyra purpurea' complex is polyphyletic and encompasses two species groups, 'A. purpurea' (mostly Atlantic) and 'A. smithi' (Indo-West Pacific). The 'A. purpurea' species group consists of two major molecular clades A. pelagica and A. kingsleyi - A. purpurea - A. quadrispinosa. Molecular data suggest that hitherto accepted species A. acanthitelsonis, A. pelagica, and A. sica should be considered as synonyms. The Atlantic is inhabited by at least two cryptic genetic lineages of A. pelagica and A. quadrispinosa. Morphological analyses of qualitative and quantitative (900 measurements) characters resulted in a tabular key to species and in a finding of four evolutionary traits. Atlantic species showed various scenarios of diversification visible on mitochondrial gene level, nuclear gene level, and morphological level. We recorded and discussed similar phylogeographic trends in diversification and in distribution of genetic lineages within two different clades: A. pelagica and A. kingsleyi - A. purpurea - A. quadrispinosa.


Subject(s)
Acanthocephala , Decapoda , Animals , Phylogeny , DNA, Mitochondrial/genetics , Phylogeography , Biological Evolution , Acanthocephala/genetics
2.
Mar Environ Res ; 183: 105848, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521303

ABSTRACT

Mesoplankton is a key element of pelagic communities representing the largest biome on the planet. Many concepts in marine and freshwater biology are based on quantitative estimates of mesoplankton abundance, whereas precision of mesoplankton sampling remains underexplored and may depend on various factors. We analyzed ten contiguous daytime epipelagic samples in the Black Sea and 13 nighttime mesopelagic samples in the South Atlantic. We used a relative error as a measure of the sampling precision and ran a set of Generalized Linear Mixed Models (GLMMs) to estimate effects of six possible factors: abundance, size, diel migration, movement speed, taxonomic group, and net type. Abundance of taxa was the most powerful factor affecting sampling precision (positive effect) followed by the net type (BR provided better precision than Judey net) and taxonomic group. Conversely, size, movement speed, and diel migrations did not significantly influence sampling precision in all sample sets. We conclude that abundance and biomass of dominant species may be estimated with a satisfactory accuracy (relative error <20% of assessed values), which suggests that recent conceptions based on total mesoplankton abundance and biomass (contributed mainly by dominant taxa) are not greatly biased. Quantitative zooplankton structure and biodiversity assessed on the basis of non-transformed matrices are likely more relevant than those based on the root-transformed or presence/absence data.


Subject(s)
Biodiversity , Ecosystem , Animals , Black Sea , Biomass , Zooplankton
3.
Sci Rep ; 10(1): 14046, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32820196

ABSTRACT

Diel and seasonal vertical migrations of zooplankton represent a widespread phenomenon occurring in marine and freshwater environments. Diel migrations are panoceanic, while seasonal migrations usually occur in temperate and polar areas. This paper describes differences in the diel and seasonal vertical migrations in the Drake Passage north and south of the Polar Front (PF). We analyzed material of 85 stations collected in spring of 2008 and 2010 (October-November) and in summer of 2010 and 2011 (January) within the 0-300 m depth range during various time of a day. At each station we sampled the upper mixed (UL), the middle (ML), and the deeper layers (DL) bounded by hydrological gradients. Diel migrations were significantly different south and north of the PF in terms of total abundance, biomass, diversity and individual taxa density. In both seasons, mesoplankton dielly migrated between the ML/DL and the UL north of the PF and between layers below 300 m and the DL and ML south of the PF. Deeper range of diel migrations south of the PF was coupled with a general mesoplankton descent in summer period compared to spring. Conversely, north of the PF, mesoplankton ascended to upper layers in summer, which was mirrored in lesser depths of diel migrations. The differences in the plankton distribution on both sides of the PF are likely associated with variations of vertical distribution of phytoplankton. Some abundant taxa such as Aetideus sp. and Oithona plumifera showed both common (nighttime ascend) and inverted (nighttime descend) vertical migrations depending on season and position related to the PF.

4.
Cladistics ; 35(2): 150-172, 2019 Apr.
Article in English | MEDLINE | ID: mdl-34622976

ABSTRACT

The first comprehensive phylogenetic study of Euphausiacea (all 86 valid species) is presented. It is based on four molecular markers and 168 morphological characters (including 58 characters of the petasma). Phylogenetic analyses support the monophyly and robustness of the families Bentheuphausidae and Euphausiidae and reveal three major clades for which we erect three new subfamilies: Thysanopodinae, Euphausiinae and Nematoscelinae. All genus-level clades are statistically supported (except Thysanopoda in molecular analyses), deeply nested within the subfamily-level clades, and encompass 14 new species groups. Copulatory structures have a major impact on tree topology in the morphological analysis, the removal of which resulted in only half the number of supported clades and genera. We revealed three groups of morphological characters, which are probably coupled with the same biological role and thus interlinked evolutionarily: (i) antennular peduncle and petasma (copulation); (ii) eyes and anterior thoracopods (feeding); and (iii) shape of carapace and pleon (defence). We analysed the evolutionary pathways of the clades into main oceanic biotopes and compared them with morphological adaptations most likely to be coupled with this process.

5.
PLoS One ; 10(7): e0129975, 2015.
Article in English | MEDLINE | ID: mdl-26161742

ABSTRACT

The paper addresses the phylogeny and classification of the hydrothermal vent shrimp family Alvinocarididae. Two morphological cladistic analyses were carried out, which use all 31 recognized species of Alvinocarididae as terminal taxa. As outgroups, two species were included, both representing major caridean clades: Acanthephyra purpurea (Acanthephyridae) and Alpheus echiurophilus (Alpheidae). For additional support of the clades we utilised available data on mitochondrial Cytochrome c Oxidase I gene (CO1) and 16S ribosomal markers. Both morphological and molecular methods resulted in similar tree topologies and nearly identical clades. We consider these clades as evolutionary units and thus erect two new subfamilies: Rimicaridinae (Alvinocaridinides, Manuscaris, Opaepele, Shinkaicaris, Rimicaris), Alvinocaridinae (Alvinocaris), whilst recognising Mirocaridinae (with genera Mirocaris and Nautilocaris) at subfamily level. One genus, Keldyshicaris could not be assigned to any subfamily and is thus left as incertae sedis. The monophyly of Alvinocardinae was supported by morphological data, but not supported by molecular data (two analyses); the monophyly of all subfamilies was supported both by morphological and molecular data. Chorocaris is herein synonymized with Rimicaris, whilst Opaepele vavilovi is herein transferred to a new genus Keldyshicaris. Morphological trends within Alvinocarididae are discussed and short biogeographical remarks are given. We provide emended diagnoses for all subfamilies and genera along with keys to all recognized species.


Subject(s)
Decapoda/genetics , Phylogeny , Animals , Biological Evolution , Decapoda/anatomy & histology , Decapoda/classification , Decapoda/enzymology , Electron Transport Complex IV/genetics , Genes, Mitochondrial , Hydrothermal Vents/analysis , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...