Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(29): 20923-20932, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38957585

ABSTRACT

In current trends, an imminent development of self-detoxification filters is highly desirable against exposure to chemical warfare agents (CWAs). Exploiting protective materials that can be applicable in day-to-day life for instantaneous detoxification will be of immense importance. The available technologies in the current scenario are susceptible to secondary emission and pose a need for an alternate design strategy for effective degradation. In addition, the choice of active material and successful impregnation on a suitable substrate for developing potential barriers requires complex material design. In this context, the developed self-standing UiO-66 and UiO-66-NH2 functionalized fabrics (MOFabrics) present an expeditious detoxification performance against CWA simulant, methyl-paraoxon, with a maximum removal percent conversion of 88.9 and 90.68%. It shows a reduced half-life of approximately 10.16 and 11.23 min, in comparison to an unmodified/carboxymethylated fabric of 462 min.

2.
Materials (Basel) ; 16(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36614400

ABSTRACT

Materials science and technology, with the advent of nanotechnology, has brought about innumerable nanomaterials and multi-functional materials, with intriguing yet profound properties, into the scientific realm. Even a minor functionalization of a nanomaterial brings about vast changes in its properties that could be potentially utilized in various applications, particularly for biological applications, as one of the primary needs at present is for point-of-care devices that can provide swifter, accurate, reliable, and reproducible results for the detection of various physiological conditions, or as elements that could increase the resolution of current bio-imaging procedures. In this regard, iron oxide nanoparticles, a major class of metal oxide nanoparticles, have been sweepingly synthesized, characterized, and studied for their essential properties; there are 14 polymorphs that have been reported so far in the literature. With such a background, this review's primary focus is the discussion of the different synthesis methods along with their structural, optical, magnetic, rheological and phase transformation properties. Subsequently, the review has been extrapolated to summarize the effective use of these nanoparticles as contrast agents in bio-imaging, therapeutic agents making use of its immune-toxicity and subsequent usage in hyperthermia for the treatment of cancer, electron transfer agents in copious electrochemical based enzymatic or non-enzymatic biosensors and bactericidal coatings over biomaterials to reduce the biofilm formation significantly.

3.
Anal Chim Acta ; 1139: 50-58, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33190709

ABSTRACT

Formalin has been used as the preservative of fishes in the concentration range of 15-25 mgL-1. However, there have been a high frequency of violations in the optimum use of formalin levels. The consumption of fishes treated with excessive formalin levels leads to nasopharynx, leukaemia and sinonasal cancer and there is a huge demand for the development of formalin sensor. Conventional formalin sensors such as chromogenic and mass balance sensors fall short in real-time analysis due to the lack of specificity and sensitivity in the interference medium. In this context, it has been emphasized to develop a non-enzymatic electrochemical biosensor with microwave synthesized CdS nanoparticles as a nanointerface owing to its surface limited kinetics. NaCl of 1 mM was considered as an electrolyte solution in the present study. Dynamic sensing characteristics with varying formalin levels of 5-50 mgL-1 was studied in three different concentration ranges as 5-15 mgL-1 (concentration of formalin < NaCl; conversion of formalin to formic acid), 20-30 mgL-1 (concentration of formalin âˆ¼ NaCl; equilibrium between the oxidative and reductive product), 35-50 mgL-1 (concentration of formalin > NaCl; complete oxidation of formic acid to CO2). Hence, with the exhibition of such a dynamic sensitivity based on electrolyte, the developed biosensor acts as an electrochemical comparator showcasing a switch-like behaviour in detecting formalin levels. The threshold concentration of formalin required for the comparator effect was found to be 14.845 mgL-1. The developed biosensor, most essentially, exhibited a versatility in quantifying formalin levels in real-time fish samples.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Animals , Electrolytes , Fishes , Formaldehyde
4.
RSC Adv ; 9(52): 30226-30239, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-35530198

ABSTRACT

In recent times, the development of breath sensors for the detection of Diabetic Keto-Acidosis (DKA) has been gaining prominent importance in the field of health care and advanced diagnostics. Acetone is one of the prominent biomarkers in the exhaled breath of persons affected by DKA. In this background, nanostructured cobalt oxide sensing elements were fabricated using a spray pyrolysis technique at different deposition temperatures (473 to 773 K in steps of 100 K) towards the fabrication of an acetone sensor. The influence of deposition temperature on the various properties of the nanostructured cobalt oxide thin films was investigated. Formation of cubic spinel phase cobalt oxide was confirmed from the structural analysis. The shifting of plane orientation from (3 1 1) to (2 2 0) at 773 K deposition temperature revealed the migration of cobalt atoms to the highly favorable energy positions. Further, the downshifted peak absorption wavelength and upshifted PL profile at higher deposition temperature confirmed the migration of cobalt ions. The sensor fabricated at higher deposition temperature (773 K) showed a sensing response of 235 at room temperature towards 50 ppm of acetone. Also, the fabricated sensor showed a lower detection limit (LOD) of 1 ppm with the response-recovery times of 6 and 4 s, respectively. The LOD reported here is lower than the minimum threshold level (1.71 ppm) signifying the presence of DKA.

5.
J Nanosci Nanotechnol ; 18(8): 5222-5233, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29458571

ABSTRACT

Nanoparticles has occupied an eminent place in our tech-facilitated society. The processes involved in synthesizing nanoparticles are important not only to find their applications, but also to make them eco-friendly. Attempts are being made to replace the use of harmful surfactants/reagents by amino acids, in the due course of nanoparticle synthesis. Especially in synthesizing the multifunctional metal and metal oxide nanoparticles the use of amino acids as surfactant/as catalyst, helps to obtain required size and shape. Amino acids have the inherent property in directing and assembling the superstructures. They have the tendency to act as a capping agent and their presence during the synthesis processes alters the synthesized particles' morphology. Review has been made to study the role of amino acids like histidine, lysine, arginine in structuring ZnO, FeO, Au and Ag nanoparticles. The change in their morphology that resulted due to the addition of amino acids has been compared. It is important to understand the role of amino acids in synthesizing the nanoparticles, and so it is more important to understand the internal energy variation of the same. To achieve this, the interaction between the bio (amino acids) and non-bio (metal and metal oxide) nanoparticles are to be discussed both experimentally and theoretically. At times the theoretical characterization, especially at low dimensions, help us to understand inter-particle interaction and intra-particle interaction by determining their chemical potential and Lennard-Jones potential. This review has been concluded with a model to characterize the precursor solution (amino acids and inorganic materials) by considering the Equation of State for liquids, which could also be extended to determine the structure factor of nanoparticles.


Subject(s)
Amino Acids/chemistry , Metal Nanoparticles , Catalysis , Histidine , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...