Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 11582, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463909

ABSTRACT

While historically viewed as an insulin insensitive organ, it is now accepted that insulin has a role in brain physiology. Changes in brain insulin and IGF1 signaling have been associated with neurological diseases, however the molecular factors regulating brain insulin sensitivity remain uncertain. In this study, we proposed that a recently described protein, termed Inceptor, may play a role in brain insulin and IGF1 resistance. We studied Inceptor in healthy and diseased nervous tissue to understand the distribution of the protein and examine how it may change in states of insulin resistance. We found that Inceptor is in fact present in cerebellum, hippocampus, hypothalamus, and cortex of the brain in neurons, with higher levels in cortex of female compared to male mice. We also confirmed that Inceptor colocalized with IR and IGF1R in brain. We saw little difference in insulin receptor signaling following Inceptor knockdown in neuron cultures, or in Inceptor levels with high-fat diet in mouse or Alzheimer's disease in mouse or human tissue. These results all provide significant advancements to our understanding of Inceptor in the brain. PROTOCOL REGISTRATION: The Stage 1 registered report manuscript was accepted-in-principle on 9 August 2022. This manuscript was registered through Open Science Forum (OSF) on 24 August 2022 and is available here: https://osf.io/9q8sw .


Subject(s)
Alzheimer Disease , Insulin Resistance , Male , Female , Mice , Humans , Animals , Brain/metabolism , Insulin/metabolism , Hippocampus/metabolism , Alzheimer Disease/metabolism , Receptor, Insulin/metabolism
2.
Cell ; 185(22): 4135-4152.e22, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36257314

ABSTRACT

Recent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aß) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aß deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3ß-signaling, and restrict Aß phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aß load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Microglia/pathology , Phagocytosis
3.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34385305

ABSTRACT

Alzheimer's disease (AD) is characterized by the presence of amyloid ß (Aß) plaques, tau tangles, inflammation, and loss of cognitive function. Genetic variation in a cholesterol transport protein, apolipoprotein E (apoE), is the most common genetic risk factor for sporadic AD. In vitro evidence suggests that apoE links to Aß production through nanoscale lipid compartments (lipid clusters), but its regulation in vivo is unclear. Here, we use superresolution imaging in the mouse brain to show that apoE utilizes astrocyte-derived cholesterol to specifically traffic neuronal amyloid precursor protein (APP) in and out of lipid clusters, where it interacts with ß- and γ-secretases to generate Aß-peptide. We find that the targeted deletion of astrocyte cholesterol synthesis robustly reduces amyloid and tau burden in a mouse model of AD. Treatment with cholesterol-free apoE or knockdown of cholesterol synthesis in astrocytes decreases cholesterol levels in cultured neurons and causes APP to traffic out of lipid clusters, where it interacts with α-secretase and gives rise to soluble APP-α (sAPP-α), a neuronal protective product of APP. Changes in cellular cholesterol have no effect on α-, ß-, and γ-secretase trafficking, suggesting that the ratio of Aß to sAPP-α is regulated by the trafficking of the substrate, not the enzymes. We conclude that cholesterol is kept low in neurons, which inhibits Aß accumulation and enables the astrocyte regulation of Aß accumulation by cholesterol signaling.


Subject(s)
Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Cholesterol/pharmacology , Neurons/drug effects , Neurons/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Apolipoproteins E , Brain/cytology , Cell Membrane , Cholesterol/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Mice , Mice, Knockout , Protein Isoforms , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism
4.
Stroke ; 52(10): 3374-3384, 2021 10.
Article in English | MEDLINE | ID: mdl-34404234

ABSTRACT

Background and Purpose: Aneurysmal subarachnoid hemorrhage (SAH) is associated with the development of delayed cognitive deficits. Neutrophil infiltration into the central nervous system is linked to the development of these deficits after SAH. It is however unclear how neutrophil activity influences central nervous system function in SAH. The present project aims to elucidate which neutrophil factors mediate central nervous system injury and cognitive deficits after SAH. Methods: Using a murine model of SAH and mice deficient in neutrophil effector functions, we determined which neutrophil effector function is critical to the development of deficits after SAH. In vivo and in vitro techniques were used to investigate possible pathways of neutrophils effect after SAH. Results: Our results show that mice lacking functional MPO (myeloperoxidase), a neutrophil enzyme, lack both the meningeal neutrophil infiltration (wild type, sham 872 cells/meninges versus SAH 3047, P=0.023; myeloperoxidase knockout [MPOKO], sham 1677 versus SAH 1636, P=NS) and erase the cognitive deficits on Barnes maze associated with SAH (MPOKO sham versus SAH, P=NS). The reintroduction of biologically active MPO, and its substrate hydrogen peroxide (H2O2), to the cerebrospinal fluid of MPOKO mice at the time of hemorrhage restores the spatial memory deficit observed after SAH (time to goal box MPOKO sham versus MPOKO+MPO/H2O2, P=0.001). We find evidence of changes in neurons, astrocytes, and microglia with MPO/H2O2 suggesting the effect of MPO may have complex interactions with many cell types. Neurons exposed to MPO/H2O2 show decreased calcium activity at baseline and after stimulation with potassium chloride. Although astrocytes and microglia are affected, changes seen in astrocytes are most consistent with inflammatory changes that likely affect neurons. Conclusions: These results implicate MPO as a mediator of neuronal dysfunction in SAH through its effect on both neurons and glia. These results show that, in SAH, the activity of innate immune cells in the meninges modulates the activity and function of the underlying brain tissue.


Subject(s)
Cerebral Veins/injuries , Neurons/pathology , Neutrophils/enzymology , Peroxidase/metabolism , Subarachnoid Hemorrhage/pathology , Animals , Astrocytes/pathology , Calcium Signaling , Cognition Disorders/etiology , Hydrogen Peroxide/cerebrospinal fluid , Hydrogen Peroxide/pharmacology , Inflammation/pathology , Maze Learning , Memory Disorders/etiology , Memory Disorders/psychology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroglia/enzymology , Peroxidase/genetics , Spatial Memory , Subarachnoid Hemorrhage/psychology
5.
Drug Dev Res ; 81(2): 194-205, 2020 04.
Article in English | MEDLINE | ID: mdl-32022298

ABSTRACT

Diabetes disrupts organs throughout the body including the brain. Evidence suggests diabetes is a risk factor for Alzheimer's disease (AD) and neurodegeneration. In this review, we focus on understanding how diabetes contributes to the progression of neurodegeneration by influencing several aspects of the disease process. We emphasize the potential roles of brain insulin resistance, as well as cholesterol and lipid disruption, as factors which worsen AD.


Subject(s)
Alzheimer Disease/etiology , Diabetes Complications/psychology , Diabetes Mellitus/metabolism , Alzheimer Disease/metabolism , Diabetes Complications/metabolism , Disease Progression , Humans , Insulin Resistance , Lipid Metabolism
6.
Am J Physiol Endocrinol Metab ; 316(1): E106-E120, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30422705

ABSTRACT

The amyloid precursor protein (APP) is a type I transmembrane glycoprotein widely studied for its role as the source of ß-amyloid peptide, accumulation of which is causal in at least some cases of Alzheimer's disease (AD). APP is expressed ubiquitously and is involved in diverse biological processes. Growing bodies of evidence indicate connections between AD and somatic metabolic disorders related to type 2 diabetes, and App-/- mice show alterations in glycemic regulation. We find that App-/- mice have higher levels of insulin-degrading enzyme (IDE) mRNA, protein, and activity compared with wild-type controls. This regulation of IDE by APP was widespread across numerous tissues, including liver, skeletal muscle, and brain as well as cell types within neural tissue, including neurons, astrocytes, and microglia. RNA interference-mediated knockdown of APP in the SIM-A9 microglia cell line elevated IDE levels. Fasting levels of blood insulin were lower in App-/- than App+/+ mice, but the former showed a larger increase in response to glucose. These low basal levels may enhance peripheral insulin sensitivity, as App-/- mice failed to develop impairment of glucose tolerance on a high-fat, high-sucrose ("Western") diet. Insulin levels and insulin signaling were also lower in the App-/- brain; synaptosomes prepared from App-/- hippocampus showed diminished insulin receptor phosphorylation compared with App+/+ mice when stimulated ex vivo. These findings represent a new molecular link connecting APP to metabolic homeostasis and demonstrate a novel role for APP as an upstream regulator of IDE in vivo.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Brain/metabolism , Insulin Resistance/genetics , Insulin/metabolism , Insulysin/genetics , Liver/metabolism , Muscle, Skeletal/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Astrocytes/metabolism , Cell Line , Diet, High-Fat , Diet, Western , Glucose Intolerance/genetics , Hippocampus/metabolism , Insulysin/metabolism , Mice , Mice, Knockout , Microglia/metabolism , Neurons/metabolism , Phosphorylation , RNA, Messenger/metabolism , Receptor, Insulin/metabolism , Synaptosomes/metabolism
7.
Neuronal Signal ; 3(4): NS20190068, 2019 12.
Article in English | MEDLINE | ID: mdl-32269839

ABSTRACT

Type 2 diabetes is associated with adverse central nervous system effects, including a doubled risk for Alzheimer's disease (AD) and increased risk of cognitive impairment, but the mechanisms connecting diabetes to cognitive decline and dementia are unknown. One possible link between these diseases may be the associated alterations to cholesterol oxidation and metabolism in the brain. We will survey evidence demonstrating alterations to oxysterols in the brain in AD and diabetes and how these oxysterols could contribute to pathology, as well as identifying research questions that have not yet been addressed to allow for a fuller understanding of the role of oxysterols in AD and diabetes.

8.
Environ Pollut ; 241: 279-288, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29843010

ABSTRACT

Environmental exposure to air pollution has been linked to a number of health problems including organ rejection, lung damage and inflammation. While the deleterious effects of air pollution in adult animals are well documented, the long-term consequences of particulate matter (PM) exposure during animal development are uncertain. In this study we tested the hypothesis that environmental exposure to PM 2.5 µm in diameter in utero promotes long term inflammation and neurodegeneration. We evaluated the behavior of PM exposed animals using several tests and observed deficits in spatial memory without robust changes in anxiety-like behavior. We then examined how this affects the brains of adult animals by examining proteins implicated in neurodegeneration, synapse formation and inflammation by western blot, ELISA and immunohistochemistry. These tests revealed significantly increased levels of COX2 protein in PM2.5 exposed animal brains in addition to changes in synaptophysin and Arg1 proteins. Exposure to PM2.5 also increased the immunoreactivity for GFAP, a marker of activated astrocytes. Cytokine concentrations in the brain and spleen were also altered by PM2.5 exposure. These findings indicate that in utero exposure to particulate matter has long term consequences which may affect the development of both the brain and the immune system in addition to promoting inflammatory change in adult animals.


Subject(s)
Air Pollutants/toxicity , Nervous System/immunology , Particulate Matter/toxicity , Toxicity Tests , Adult , Air Pollutants/analysis , Air Pollution/analysis , Animals , Anxiety/chemically induced , Behavior, Animal/drug effects , Biomarkers/analysis , Brain/drug effects , Environmental Exposure/analysis , Humans , Male , Mice , Particulate Matter/analysis , Phenotype
9.
J Neurochem ; 143(6): 736-749, 2017 12.
Article in English | MEDLINE | ID: mdl-28881033

ABSTRACT

Aggregation and accumulation of amyloid-ß peptide (Aß) is a key component of Alzheimer's disease (AD). While monomeric Aß appears to be benign, oligomers adopt a biologically detrimental structure. These soluble structures can be detected in AD brain tissue by antibodies that demonstrate selectivity for aggregated Aß. Protofibrils are a subset of soluble oligomeric Aß species and are described as small (< 100 nm) curvilinear assemblies enriched in ß-sheet structure. Our own in vitro studies demonstrate that microglial cells are much more sensitive to soluble Aß42 protofibrils compared to Aß42 monomer or insoluble Aß42 fibrils. Protofibrils interact with microglia, trigger Toll-like receptor signaling, elicit cytokine transcription and expression, and are rapidly taken up by the cells. Because of the importance of this Aß species, we sought to develop an antibody that selectively recognizes protofibrils over other Aß species. Immunization of rabbits with isolated Aß42 protofibrils generated a high-titer anti serum with a strong affinity for Aß42 protofibrils. The antiserum, termed AbSL, was selective for Aß42 protofibrils over Aß42 monomers and Aß42 fibrils. AbSL did not react with amyloid precursor protein and recognized distinct pathological features in AD transgenic mouse brain slices. Competition studies with an Aß antibody that targets residues 1-16 indicated that the conformational epitope for AbSL involved the N-terminal region of protofibrils in some manner. The newly developed antibody may have potential diagnostic and therapeutic uses in AD tissue and patients, and targeting of protofibrils in AD may have beneficial effects. Read the Editorial Highlight for this article on page 621. Cover Image for this issue: doi. 10.1111/jnc.13827.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/immunology , Antibodies/immunology , Peptide Fragments/chemistry , Peptide Fragments/immunology , Animals , Antibody Specificity , Epitopes , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Conformation, beta-Strand
10.
J Endocrinol ; 235(1): 49-67, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28710249

ABSTRACT

The amyloid precursor protein (APP) has been extensively investigated for its role in the production of amyloid beta (Aß), a plaque-forming peptide in Alzheimer's disease (AD). Epidemiological evidence suggests type 2 diabetes is a risk factor for AD. The pancreas is an essential regulator of blood glucose levels through the secretion of the hormones insulin and glucagon. Pancreatic dysfunction is a well-characterized consequence of type 1 and type 2 diabetes. In this study, we have examined the expression and processing of pancreatic APP to test the hypothesis that APP may play a role in pancreatic function and the pathophysiology of diabetes. Our data demonstrate the presence of APP within the pancreas, including pancreatic islets in both mouse and human samples. Additionally, we report that the APP/PS1 mouse model of AD overexpresses APP within pancreatic islets, although this did not result in detectable levels of Aß. We compared whole pancreas and islet culture lysates by Western blot from C57BL/6 (WT), APP-/- and APP/PS1 mice and observed APP-dependent differences in the total protein levels of GLUT4, IDE and BACE2. Immunohistochemistry for BACE2 detected high levels in pancreatic α cells. Additionally, both mouse and human islets processed APP to release sAPP into cell culture media. Moreover, sAPP stimulated insulin but not glucagon secretion from islet cultures. We conclude that APP and its metabolites are capable of influencing the basic physiology of the pancreas, possibly through the release of sAPP acting in an autocrine or paracrine manner.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Alzheimer Disease/complications , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Female , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Precursors/genetics , Protein Precursors/metabolism
11.
J Neurosci ; 36(32): 8471-86, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27511018

ABSTRACT

UNLABELLED: Prior work suggests that amyloid precursor protein (APP) can function as a proinflammatory receptor on immune cells, such as monocytes and microglia. Therefore, we hypothesized that APP serves this function in microglia during Alzheimer's disease. Although fibrillar amyloid ß (Aß)-stimulated cytokine secretion from both wild-type and APP knock-out (mAPP(-/-)) microglial cultures, oligomeric Aß was unable to stimulate increased secretion from mAPP(-/-) cells. This was consistent with an ability of oligomeric Aß to bind APP. Similarly, intracerebroventricular infusions of oligomeric Aß produced less microgliosis in mAPP(-/-) mice compared with wild-type mice. The mAPP(-/-) mice crossed to an APP/PS1 transgenic mouse line demonstrated reduced microgliosis and cytokine levels and improved memory compared with wild-type mice despite robust fibrillar Aß plaque deposition. These data define a novel function for microglial APP in regulating their ability to acquire a proinflammatory phenotype during disease. SIGNIFICANCE STATEMENT: A hallmark of Alzheimer's disease (AD) brains is the accumulation of amyloid ß (Aß) peptide within plaques robustly invested with reactive microglia. This supports the notion that Aß stimulation of microglial activation is one source of brain inflammatory changes during disease. Aß is a cleavage product of the ubiquitously expressed amyloid precursor protein (APP) and is able to self-associate into a wide variety of differently sized and structurally distinct multimers. In this study, we demonstrate both in vitro and in vivo that nonfibrillar, oligomeric forms of Aß are able to interact with the parent APP protein to stimulate microglial activation. This provides a mechanism by which metabolism of APP results in possible autocrine or paracrine Aß production to drive the microgliosis associated with AD brains.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Microglia/metabolism , Adaptation, Ocular/genetics , Adaptation, Ocular/physiology , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/pharmacology , Animals , Astrocytes/metabolism , Cell Proliferation/genetics , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Exploratory Behavior/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Morpholinos/pharmacology , Mutation/genetics , Phenotype , Presenilin-1/genetics , Presenilin-1/metabolism
12.
Neurobiol Aging ; 40: 22-40, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26973101

ABSTRACT

APP/PS1 double transgenic mice expressing human mutant amyloid precursor protein (APP) and presenilin-1 (PS1) demonstrate robust brain amyloid beta (Aß) peptide containing plaque deposition, increased markers of oxidative stress, behavioral dysfunction, and proinflammatory gliosis. On the other hand, lack of growth hormone, prolactin, and thyroid-stimulating hormone due to a recessive mutation in the Prop 1 gene (Prop1df) in Ames dwarf mice results in a phenotype characterized by potentiated antioxidant mechanisms, improved learning and memory, and significantly increased longevity in homozygous mice. Based on this, we hypothesized that a similar hormone deficiency might attenuate disease changes in the brains of APP/PS1 mice. To test this idea, APP/PS1 mice were crossed to the Ames dwarf mouse line. APP/PS1, wild-type, df/+, df/df, df/+/APP/PS1, and df/df/APP/PS1 mice were compared at 6 months of age through behavioral testing and assessing amyloid burden, reactive gliosis, and brain cytokine levels. df/df mice demonstrated lower brain growth hormone and insulin-like growth factor 1 concentrations. This correlated with decreased astrogliosis and microgliosis in the df/df/APP/PS1 mice and, surprisingly, reduced Aß plaque deposition and Aß 1-40 and Aß 1-42 concentrations. The df/df/APP/PS1 mice also demonstrated significantly elevated brain levels of multiple cytokines in spite of the attenuated gliosis. These data indicate that the df/df/APP/PS1 line is a unique resource in which to study aging and resistance to disease and suggest that the affected pituitary hormones may have a role in regulating disease progression.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Growth Hormone/deficiency , Homeodomain Proteins/genetics , Mutation , Phenotype , Presenilin-1/genetics , Presenilin-1/metabolism , Prolactin/deficiency , Thyrotropin/deficiency , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Animals , Brain/pathology , Cells, Cultured , Cytokines/metabolism , Gene Expression , Gliosis , Insulin-Like Growth Factor I/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...