Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 52(7): 644-653, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38670798

ABSTRACT

Free (unbound) drug concentration at the site of action is the key determinant of biologic activity since only unbound drugs can exert pharmacological and toxicological effects. Unbound drug concentration in tumors for solid cancers is needed to understand/explain/predict pharmacokinetics, pharmacodynamics, and efficacy relations. Fraction unbound (fu ) in tumors is usually determined across several xenografted tumors derived from various cell lines in the drug discovery stage, which is time consuming and a resource burden. In this study, we determined the fu values for a set of diverse compounds (comprising acid, base, neutral, zwitterion, and covalent drugs) across five different xenografted tumors and five commercially available mouse tissues to explore the correlation of fu between tumors and the possibility of surrogate tissue(s) for tumor fu (fu,tumor) determination. The crosstumor comparison showed that fu,tumor values across tumors are largely comparable, and systematic tissue versus tumor comparison demonstrated that only lung tissue had comparable fu to all five tumors (fu values within twofold change for >80% compounds in both comparisons). These results indicated that mouse lung tissue can be used as a surrogate matrix for a fu,tumor assay. This study will increase efficiency in fu,tumor assessment and reduce animal use (adapting the replace, reduce, and refine principle) in drug discovery. SIGNIFICANCE STATEMENT: The free drug concept is a well accepted principle in drug discovery research. Currently, tumor fraction unbound (fu,tumor) is determined in several tumors derived from different cell lines to estimate free drug concentrations of a compound. The results from this study indicated that fu,tumor across xenografted tumors is comparable, and fu,tumor can be estimated using a surrogate tissue, mouse lung. The results will increase efficiency in fu,tumor assessment and reduce animal use in drug discovery.


Subject(s)
Lung , Animals , Mice , Humans , Lung/metabolism , Lung/drug effects , Lung/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays/methods , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Female
2.
Biochem Biophys Res Commun ; 637: 267-275, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36410276

ABSTRACT

Phosphoinositide 3-kinase (PI3K) pathway mediates key signaling events downstream to B-cell receptor (BCR) for survival of mature B-cells, and overexpression or overactivation of PI3Kδ is crucial for B-cell malignancies such as diffuse large B-cell lymphoma (DLBCL). Small molecule PI3Kδγ inhibitors, with a known potential to reduce activated B-cell (ABC)-DLBCL transformation, form an important class of therapeutics approved for follicular lymphoma (FL), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL). In this study, we describe discovery of a potent, selective and efficacious dual PI3Kδγ inhibitor, LL-00084282, having a differentiated efficacy profile in human ABC- and germinal center B-cell (GCB)-DLBCL cell lines. LL-00084282 displayed high potency and superior PI3Kδγ engagement with excellent selectivity over other PI3K isoforms at both IC50/90 concentrations in biochemical and cell-based assays. In contrast to selective PI3Kδ inhibitors, LL-00084282 showed superior and potent anticancer activity in both ABC- and GCB-DLBCL cell lines. LL-00084282 demonstrated in-vivo efficacy in OCI-Ly10 and SU-DHL-6 xenografts with good tolerability. Furthermore, LL-00084282 inhibited pro-inflammatory cytokine secretion and reduced basophil activation in human PBMCs, showing potential implications in immunoinflammatory conditions. Good pharmacokinetic properties in higher species and desirable efficacy profile highlights potential of this novel PI3Kδγ inhibitor for further clinical evaluation in DLBCL patients.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Phosphoinositide-3 Kinase Inhibitors , Humans , B-Lymphocytes , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Cell Line, Tumor
3.
Eur J Pharmacol ; 927: 175054, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35636524

ABSTRACT

PI3Kδ plays a critical role in adaptive immune cell activation and function. Suppression of PI3Kδ has been shown to counter excessive triggering of immune responses which has led to delineating the role of this isoform in the pathophysiology of autoimmune disorders. In the current study, we have described preclinical characterization of PI3Kδ specific inhibitor LL-00071210 in various rheumatoid arthritis models. LL-00071210 displayed excellent in vitro potency in biochemical and cellular assay against PI3Kδ with IC50 values of 24.6 nM and 9.4 nM, respectively. LL-00071210 showed higher selectivity over PI3Kγ and PI3Kß as compared to available PI3K inhibitors. LL-00071210 had good stability in liver microsomes and plasma across species and showed low clearance, low-to-moderate Vss, with bioavailability of >50% in preclinical species. LL-00071210 demonstrated excellent in vivo efficacy in adjuvant-induced and collagen-induced arthritis models. Co-administration of LL-00071210 and methotrexate at subtherapeutic dose regimen in collagen induced arthritis model led to additive effects, indicating the combination potential of LL-00071210 along with available disease modifying anti-rheumatic drugs (DMARD). In conclusion, we have described a specific PI3Kδ inhibitor with ∼100-fold selectivity over other PI3K isoforms. LL-00071210 has good drug-like properties and thus warrants testing in the clinic for the treatment of autoimmune diseases.


Subject(s)
Arthritis, Rheumatoid , Phosphatidylinositol 3-Kinases , Arthritis, Rheumatoid/drug therapy , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Structure-Activity Relationship
4.
J Med Chem ; 64(23): 17004-17030, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34843241

ABSTRACT

The role of calcium release-activated calcium (CRAC) channels is well characterized and is of particular importance in T-cell function. CRAC channels are involved in the pathogenesis of several autoimmune diseases, making it an attractive therapeutic target for treating inflammatory diseases, like rheumatoid arthritis (RA). A systematic structure-activity relationship study with the goal of optimizing lipophilicity successfully yielded two lead compounds, 36 and 37. Both compounds showed decent potency and selectivity and a remarkable pharmacokinetic profile. Further characterization in in vivo RA models and subsequent histopathological evaluation of tissues led to the identification of 36 as a clinical candidate. Compound 36 displayed an excellent safety profile and had a sufficient safety margin to qualify it for use in human testing. Oral administration of 36 in Phase 1 clinical study in healthy volunteers established favorable safety, tolerability, and good target engagement as measured by levels of IL-2 and TNF-α.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Release Activated Calcium Channels/antagonists & inhibitors , Calcium/metabolism , Drug Discovery , Administration, Oral , Animals , Area Under Curve , Arthritis, Rheumatoid/drug therapy , Calcium Channel Blockers/pharmacokinetics , Clinical Trials, Phase I as Topic , Humans , Jurkat Cells , Male , Mice , Mice, Inbred BALB C , Rats , Rats, Inbred Lew , Structure-Activity Relationship
5.
J Med Chem ; 62(23): 10563-10582, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31710479

ABSTRACT

The identification of a novel class of potent pan-genotypic NS5A inhibitors with good pharmacokinetic profile suitable for potential use in treating HCV infections is disclosed here. The present series of compounds are with less complex tricyclic central core, identified through a systematic SAR study carried out on biphenyl moiety. The SAR outcome has confirmed the requirement of near planar and linear conformation of the molecule to achieve the best pan-genotypic activity. In addition, SAR with substituted imidazoles on improvement of antiviral activity is disclosed. The newly identified compounds 12, 16, 19-21 have shown desirable pharmacokinetic profiles with a favorable uptake of compounds in liver and maintained a significant concentration for up to 8 h in the liver. In addition, compounds 20 and 21 have shown superior pan-genotypic anti-HCV activity compared to ledipasvir and daclatasvir. Additional characterization and preliminary safety assessment resulted in the identification of compound 20 as a potential clinical candidate.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Hepacivirus/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Genotype , Hepacivirus/drug effects , Hepacivirus/genetics , Molecular Structure , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics
6.
Antimicrob Agents Chemother ; 57(11): 5315-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23939903

ABSTRACT

Drug resistance has become a global threat that, if not addressed, may return us to the preantibiotic era. A way to overcome the problem of growing incidence of global antibiotic resistance is to introduce compounds belonging to classes that are new to the clinic. During a screening of the marine microbial extract library for new antibiotics, one of the extracts showed promising antibacterial activity against Gram-positive organisms. Bioactivity-guided isolation and characterization of active metabolites led to the discovery of a novel thiazolyl cyclic-peptide antibiotic, PM181104. It was isolated and characterized from a marine sponge-associated actinobacterium strain of the genus Kocuria (MTCC 5269). The compound exhibited a potent in vitro antibacterial activity against a broad range of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The MIC values evaluated for the compound were found to be in the single-digit nanomolar range. In in vivo studies of PM181104 in a BALB/c murine septicemia model, the compound displayed 100% effective dose (ED100) values of 2.5 and 5.0 mg/kg of body weight against MRSA and 10.0 mg/kg against VRE. In this report, in vitro and in vivo studies of PM181104 are described.


Subject(s)
Actinobacteria/chemistry , Anti-Bacterial Agents/pharmacology , Aquatic Organisms/chemistry , Drug Discovery , Peptides, Cyclic/pharmacology , Sepsis/drug therapy , Animals , Anti-Bacterial Agents/isolation & purification , Dose-Response Relationship, Drug , Enterococcus/drug effects , Enterococcus/growth & development , Female , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Peptides, Cyclic/isolation & purification , Sepsis/microbiology , Vancomycin Resistance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...