Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069373

ABSTRACT

Cell sheet (CS) engineering using mesenchymal stromal cells (MSC) draws significant interest for regenerative medicine and this approach translates to clinical use for numerous indications. However, little is known of factors that define the timing of CS assembly from primary cultures. This aspect is important for planning CS delivery in autologous and allogeneic modes of use. We used a comparative in vitro approach with primary donors' (n = 14) adipose-derived MSCs and evaluated the impact of healthy subject's sex, MSC culture features (population doubling time and lag-phase), and extracellular matrix (ECM) composition along with factors related to connective tissue formations (α-SMA and FAP-α) on CS assembly duration. Using qualitative and quantitative analysis methods, we found that, in seeded MSCs, high contents of collagen I and collagen IV had a direct correlation with longer CS assembly duration. We found that short lag-phase cultures faster turned to a ready-to-use CS, while age, sex, fibronectin, laminin, α-SMA, and FAP-α failed to provide a significant correlation with the timing of assembly. In detachable CSs, FAP-α was negatively correlated with the duration of assembly, suggesting that its concentration rose over time and contributed to MSC activation, transitioning to α-SMA-positive myofibroblasts and ECM turnover. Preliminary data on cell density and collagen I deposition suggested that the TGF-ß1 signaling axis is of pivotal importance for ECM composition and construct maturation.


Subject(s)
Extracellular Matrix , Mesenchymal Stem Cells , Humans , Cells, Cultured , Extracellular Matrix/physiology , Collagen Type I , Collagen Type IV , Cell Differentiation
2.
Int J Mol Sci ; 24(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37762507

ABSTRACT

T-cadherin is a regulator of blood vessel remodeling and angiogenesis, involved in adiponectin-mediated protective effects in the cardiovascular system and in skeletal muscles. GWAS study has previously demonstrated a SNP in the Cdh13 gene to be associated with hypertension. However, the role of T-cadherin in regulating blood pressure has not been experimentally elucidated. Herein, we generated Cdh13∆Exon3 mice lacking exon 3 in the Cdh13 gene and described their phenotype. Cdh13∆Exon3 mice exhibited normal gross morphology, life expectancy, and breeding capacity. Meanwhile, their body weight was considerably lower than of WT mice. When running on a treadmill, the time spent running and the distance covered by Cdh13∆Exon3 mice was similar to that of WT. The resting blood pressure in Cdh13∆Exon3 mice was slightly higher than in WT, however, upon intensive physical training their systolic blood pressure was significantly elevated. While adiponectin content in the myocardium of Cdh13∆Exon3 and WT mice was within the same range, adiponectin plasma level was 4.37-fold higher in Cdh13∆Exon3 mice. Moreover, intensive physical training augmented the AMPK phosphorylation in the skeletal muscles and myocardium of Cdh13∆Exon3 mice as compared to WT. Our data highlight a critically important role of T-cadherin in regulation of blood pressure and stamina in mice, and may shed light on the pathogenesis of hypertension.


Subject(s)
Adiponectin , Hypertension , Animals , Mice , Blood Pressure , Adiponectin/genetics , Cadherins/genetics , Hypertension/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...