Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; 42(3): 273-284, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37313852

ABSTRACT

In the context of circular economy and heavy metal (HM) recovery from municipal solid waste incineration (MSWI) fly ash (FA), detailed knowledge of HM binding forms is required for achieving higher extraction rates. The FA mineralogy is still poorly understood due to its low grain size and low metal concentration. To investigate the HM binding forms, a sophisticated thermodynamic reactive transport model was developed to simulate ash-forming processes. The stability of different binding forms was investigated at different flue gas conditions (varying ratios of HCl, SO2, O2) by simulating the gas cooling path in closed system and dynamic open system, where the gas composition is changing upon cooling due to precipitation of solids. The simulations predict that at flue gas conditions of molar ratio S/Cl < 1, Cu and Zn precipitate as oxides (and Zn silicates) at approximately 650°C. At temperatures <300°C, Zn, Cu, Pb and Cd are predicted to precipitate as easily soluble chlorides. In flue gas with molar ratio S/Cl > 1, the HM precipitate as less soluble sulphates. The results indicate that the less soluble HM fraction in the electrostatic precipitator ash represent oxides and silicates that formed in the boiler section but were transported to the electrostatic precipitator. The model provides insight into the physical-chemical processes controlling the metal accumulation in the flue gas and FA during the cooling of the flue gas. The obtained data serve as valuable basis for improving metal recovery from MSWI FA.


Subject(s)
Coal Ash , Solid Waste , Thermodynamics , Incineration , Oxides , Silicates
2.
Mater Struct ; 55(8): 212, 2022.
Article in English | MEDLINE | ID: mdl-36172008

ABSTRACT

The CASH+ sublattice solid solution model of C-S-H aims to predict the composition of C-S-H and its ability to take up alkalis. It was originally developed for dilute systems with high water-solid ratios, and thus in this paper further optimized and benchmarked against measured pore solution compositions of hydrated Portland cement (PC) and PC blended with silica fume (SF) at realistic water-binder ratios. To get an improved agreement with the pore solution data, the stability of two CASH+ model endmembers, TCKh and TCNh, has been fine-tuned with standard Gibbs energy corrections of + 7.0 and + 5.0 kJ·mol-1, respectively (at 1 bar, 25 °C). The agreement was maintained with the experiments used to originally parameterize the CASH+ model for the uptake of K and Na in dilute systems. The K and Na concentrations predicted using the fine-tuned CASH+NK model are in a good agreement with the measured values for PC and PC + SF system at different water to binder ratios, silica fume additions, and at temperatures up to 80 °C. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-022-02045-0.

3.
Waste Manag ; 76: 457-471, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29559296

ABSTRACT

Fly ash from municipal solid waste incineration contains a large potential for recyclable metals such as Zn, Pb, Cu and Cd. The Swiss Waste Ordinance prescribes the treatment of fly ash and recovery of metals to be implemented by 2021. More than 60% of the fly ash in Switzerland is acid leached according to the FLUWA process, which provides the basis for metal recovery. The investigation and optimization of the FLUWA process is of increasing interest and an industrial solution for direct metal recovery within Switzerland is in development. With this work, a detailed laboratory study on different filter cakes from fly ash leaching using HCl 5% (represents the FLUWA process) and concentrated sodium chloride solution (300 g/L) is described. This two-step leaching of fly ash is an efficient combination for the mobilization of a high percentage of heavy metals from fly ash (Pb, Cd ≥ 90% and Cu, Zn 70-80%). The depletion of these metals is mainly due to a combination of redox reaction and metal-chloride-complex formation. The results indicate a way forward for an improved metal depletion and recovery from fly ash that has potential for application at industrial scale.


Subject(s)
Coal Ash , Incineration , Metals, Heavy/chemistry , Carbon , Hydrochloric Acid/chemistry , Particulate Matter , Sodium Chloride/chemistry , Switzerland
4.
Environ Sci Technol ; 36(13): 2926-31, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12144269

ABSTRACT

A thermodynamic Gibbs energy minimization (GEM) solid solution-aqueous solution (SSAS) equilibrium model was used to determine the solubility of Zn from calcium silicate hydrate (CSH) phases doped with 0, 0.1, 1, 5, and 10% Zn at a unity (Ca+Zn)/Si molar ratio. Both the stoichiometry and standard molar Gibbs energy (G(o)298) of the Zn-bearing end-member in the ideal ternary Zn-bearing calcium silicate hydrate (CZSH) solid solution were determined by a "dual-thermodynamic" (GEM-DT) estimation technique. The SSAS model reproduces a complex sequence of reactions suggested to occur in a long-term weathering scenario of cementitious waste forms at subsurface repository conditions. The GEM model of CZSH leaching at several Zn loadings and solid/water (s/w) ratios in a C02-free system showed that, upon complete dissolution of portlandite and calcium zincate phases at decreasing s/w < 0.01 mol x kg(H2O)(-1), the total dissolved concentrations Si(aq), Ca(aq), and Zn(aq) are controlled by a CZSH solid solution of changing composition, with a trough-like Znaq drop by 2-3 orders of magnitude. Carbonation was simulated in another GEM model run series by CO2 titration of the system with initial s/w approximately 0.9 mol/kg(H2O). Formation of (Ca,Zn)-CO3 nonideal solid solution was predicted already at early reaction stage in the presence of both portlandite and calcium zincate hydrate phases. Upon their disappearance, pH, Zn(aq), C(aq), and fCO2 were predicted to change due to the incongruent dissolution of two concurrent CZSH-I and CZSH-II solid solutions, until the total re-partitioning of Ca and Zn into a carbonate solid solution coexisting with amorphous silica at fCO2 > 0.1 bar. Along this solid-phase transition, dissolved Zn(aq) concentrations follow a highly nonlinear trend. The model results predict that at low to moderate Zn loading (< or = 1% per mole Si), CZSH-type compounds can efficiently immobilize Zn in the near field of a cement-stabilized waste repository.


Subject(s)
Calcium Compounds/chemistry , Manufactured Materials , Models, Theoretical , Refuse Disposal/methods , Silicates/chemistry , Zinc/chemistry , Environmental Pollution/prevention & control , Solubility , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...