Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 27(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431855

ABSTRACT

The occurrence and distribution of antibiotics in the environment has received increasing attention due to their potential adverse effects on human health and ecosystems. Humic substances (HS) influence the mobility, reactivity, and bioavailability of antibiotics in the environment significantly due to their interaction. As a result, HS can affect the dissemination of antibiotic-resistance genes, which is one of the main problems arising from contamination with antibiotics. The review provides quantitative data on the binding of HS with fluoroquinolones, macrolides, sulfonamides, and tetracyclines and reports the proposed mechanisms of their interaction. The main issues of the quantification of antibiotic-HS interaction are discussed, which are a development of standard approaches and the accumulation of a dataset using a standard methodology. This would allow the implementation of a meta-analysis of data to reveal the patterns of the binding of antibiotics to HS. Examples of successful development of humic-based sorbents for fluoroquinolone and tetracycline removal from environmental water systems or polluted wastewaters were given. Data on the various effects of HS on the dissemination of antibiotic-resistance genes (ARGs) were summarized. The detailed characterization of HS properties as a key point of assessing the environmental consequences of the formation of antibiotic-HS complexes, such as the dissemination of antibiotic resistance, was proposed.


Subject(s)
Anti-Bacterial Agents , Humic Substances , Humans , Ecosystem , Fluoroquinolones , Sulfanilamide
2.
Polymers (Basel) ; 13(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34641078

ABSTRACT

Humic substances (HS) are natural supramolecular systems of high- and low-molecular-weight compounds with distinct immunomodulatory and protective properties. The key beneficial biological activity of HS is their antioxidant activity. However, systematic studies of the antioxidant activity of HS against biologically relevant peroxyl radicals are still scarce. The main objective of this work was to estimate the antioxidant capacity (AOC) of a broad set of HS widely differing in structure using an oxygen radical absorption capacity (ORAC) assay. For this purpose, 25 samples of soil, peat, coal, and aquatic HS and humic-like substances were characterized using elemental analysis and quantitative 13C solution-state NMR. The Folin-Ciocalteu method was used to quantify total phenol (TP) content in HS. The determined AOC values varied in the range of 0.31-2.56 µmol Trolox eqv. mg-1, which is close to the values for ascorbic acid and vitamin E. Forward stepwise regression was used to reveal the four main factors contributing to the AOC value of HS: atomic C/N ratio, content of O-substituted methine and methoxyl groups, and TP. The results obtained clearly demonstrate the dependence of the AOC of HS on both phenolic and non-phenolic moieties in their structure, including carbohydrate fragments.

3.
Molecules ; 26(9)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063010

ABSTRACT

The state of the art of the reported data on interactions between microorganisms and HSs is presented herein. The properties of HSs are discussed in terms of microbial utilization, degradation, and transformation. The data on biologically active individual compounds found in HSs are summarized. Bacteria of the phylum Proteobacteria and fungi of the phyla Basidiomycota and Ascomycota were found to be the main HS degraders, while Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the predominant phyla in humic-reducing microorganisms (HRMs). Some promising aspects of interactions between microorganisms and HSs are discussed as a feasible basis for nature-like biotechnologies, including the production of enzymes capable of catalyzing the oxidative binding of organic pollutants to HSs, while electron shuttling through the utilization of HSs by HRMs as electron shuttles may be used for the enhancement of organic pollutant biodegradation or lowering bioavailability of some metals. Utilization of HSs by HRMs as terminal electron acceptors may suppress electron transfer to CO2, reducing the formation of CH4 in temporarily anoxic systems. The data reported so far are mostly related to the use of HSs as redox compounds. HSs are capable of altering the composition of the microbial community, and there are environmental conditions that determine the efficiency of HSs. To facilitate the development of HS-based technologies, complex studies addressing these factors are in demand.


Subject(s)
Bacteria/metabolism , Environmental Restoration and Remediation/methods , Humic Substances/analysis , Biodegradation, Environmental , Biotransformation , Fungi/metabolism
4.
Bioresour Technol ; 335: 125229, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34010738

ABSTRACT

The process of kraft lignin modification by the white-rot fungus Trametes hirsuta was investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), and groups of systematically changing compounds were delineated. In the course of cultivation, fungus tended to degrade progressively more reduced compounds and produced more oxidized ones. However, this process was not gradual - the substantial discontinuity was observed between 6th and 10th days of cultivation. Simultaneously, the secretion of ligninolytic peroxidases by the fungus was changing in a cascade manner - new isoenzymes were added to the mixture of the already secreted ones, and once new isoenzyme appeared both its relative quantity and number of isoforms increased as cultivation proceeded. It was proposed, that the later secreted peroxidases (MnP7 and MnP1) possess higher substrate affinity for some phenolic compounds and act in more specialized manner than the early secreted ones (MnP5 and VP2).


Subject(s)
Lignin , Trametes , Peroxidases , Polyporaceae , Proteome
5.
Environ Sci Technol ; 54(5): 2667-2677, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32045519

ABSTRACT

The goal of this study was to establish a relationship between the optical properties of soil dissolved organic matter (DOM) and acidic functions carried out by its individual constituents. We obtained 12 fractions of DOM samples using sequential solid phase extraction on nonionic sorbent at steadily lowered pH values: 7, 5, 3, 2, which correspond to low bounds of pKa values of phenols, aliphatic, and aromatic carboxylic acids, and ketoacids. The structural studies were conducted with the use of NMR and selective deuteromethylation of isolated fractions coupled to ultrahigh resolution mass spectrometry. First, a gradual shift of molecular compositions was observed from reduced components to aromatic oxidized compounds isolated at pH 7 and 2, respectively. Changes in molecular compositions were accompanied by a red shift of fluorescence spectra. Further application of deuteromethylation enabled us to distinguish DOM constituents with different amounts of carboxylic groups. Moreover, identification of structural isomers in a single DOM sample was achieved. Statistical analysis revealed that red shift of fluorescence is facilitated by the increase of a contribution of aromatic poly(carboxylic acid)s with high conjugation lengths. Additionally, analysis of the labeled fractionated permafrost thaw DOM directly showed carboxyl-rich alicyclic molecules, while the same components from lower-latitude DOM were assigned to lignin-like species.


Subject(s)
Organic Chemicals , Soil , Acids , Mass Spectrometry , Solid Phase Extraction
6.
Chemosphere ; 238: 124646, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31473523

ABSTRACT

Humic substances (HS) in the aqueous solutions can be considered as colloidal particles formed by amphiphilic units. HS form micelles-like structures at concentrations close to 5 g/L. However colloidal behavior of HS at concentrations below 100 mg/L is unknown. Using radiotracer assay we have shown that in this concentration range HS form rare adsorption layers at the liquid/liquid interface and penetrate into the organic phase with the distribution ratio close to 10-3. We found that pH and HS molecular weight strongly influence on the distribution ratio but do not significantly change the adsorption. Furthermore, colloidal properties of HS are strongly depending on its origin: the highest surface activity was shown for HS separated from peat and the least was observed for HS separated from soils. We anticipate our assay to be a helpful tool for detailed analysis and modeling HS and humic-like materials colloidal behavior in the environment.


Subject(s)
Humic Substances/analysis , Solutions/chemistry , Adsorption , Colloids , Hydrogen-Ion Concentration , Micelles , Molecular Weight , Soil , Tritium/analysis
7.
J Agric Food Chem ; 65(51): 11157-11169, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29206449

ABSTRACT

Availability of Fe in soil to plants is closely related to the presence of humic substances (HS). Still, the systematic data on applicability of iron-based nanomaterials stabilized with HS as a source for plant nutrition are missing. The goal of our study was to establish a connection between properties of iron-based materials stabilized by HS and their bioavailability to plants. We have prepared two samples of leonardite HS-stabilized iron-based materials with substantially different properties using the reported protocols and studied their physical chemical state in relation to iron uptake and other biological effects. We used Mössbauer spectroscopy, XRD, SAXS, and TEM to conclude on iron speciation, size, and crystallinity. One material (Fe-HA) consisted of polynuclear iron(III) (hydr)oxide complexes, so-called ferric polymers, distributed in HS matrix. These complexes are composed of predominantly amorphous small-size components (<5 nm) with inclusions of larger crystalline particles (the mean size of (11 ± 4) nm). The other material was composed of well-crystalline feroxyhyte (δ'-FeOOH) NPs with mean transverse sizes of (35 ± 20) nm stabilized by small amounts of HS. Bioavailability studies were conducted on wheat plants under conditions of iron deficiency. The uptake studies have shown that small and amorphous ferric polymers were readily translocated into the leaves on the level of Fe-EDTA, whereas relatively large and crystalline feroxyhyte NPs were mostly sorbed on the roots. The obtained data are consistent with the size exclusion limits of cell wall pores (5-20 nm). Both samples demonstrated distinct beneficial effects with respect to photosynthetic activity and lipid biosynthesis. The obtained results might be of use for production of iron-based nanomaterials stabilized by HS with the tailored iron availability to plants. They can be applied as the only source for iron nutrition as well as in combination with the other elements, for example, for industrial production of "nanofortified" macrofertilizers (NPK).


Subject(s)
Fertilizers/analysis , Humic Substances/analysis , Hydroxides/chemistry , Iron/chemistry , Iron/metabolism , Nanoparticles/chemistry , Triticum/metabolism , Biological Availability , Hydroxides/metabolism , Nanoparticles/metabolism , Particle Size , Triticum/growth & development , X-Ray Diffraction
8.
Sci Rep ; 6: 28869, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27350412

ABSTRACT

Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions.


Subject(s)
Humic Substances/analysis , Minerals/metabolism , Seedlings/metabolism , Triticum/metabolism , Adaptation, Physiological , Isotope Labeling , Photosynthesis , Plant Roots/metabolism , Plant Shoots/metabolism , Plant Vascular Bundle , Stress, Physiological , Tritium/metabolism
9.
J Chem Ecol ; 40(6): 643-52, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24859517

ABSTRACT

Humic substances (HS) represent the major reservoir of carbon (C) in ecosystems, and their turnover is crucial for understanding the global C cycle. Although basidiomycetes clearly have a role in HS degradation, much less is known about the effect of HS on fungal traits. We studied the alteration of physiological, biochemical, and morphological characteristics of Trametes maxima in the presence of HS. Both complete medium and minimal (C-limited) medium mimicking natural environmental conditions were used. Adding HS led to increased biomass yield, but under C-limited conditions the effect was more apparent. This result indicated that HS were used as an additional substrate and agreed with data showing a greater penetration of tritium-labeled HS into the cell interior under C-limited conditions. Humic substances induced ultra-structural changes in fungal cells, especially under C limitation, including reducing the thicknesses of the hyphal sheath and cell wall. In the minimal medium, cellular respiration increased nearly three-fold under HS application, while the corresponding effect in complete medium was lower. In addition, in the presence of inhibitors, HS stimulated either the cytochrome or the alternative pathway of respiration, depending on presence or absence of glucose in the medium. Our results suggest that, under conditions mimicking the natural environment, HS may play three major roles: as a surplus substrate for fungal growth, as a factor positively affecting cell morphology, and as an activator of physiological respiration.


Subject(s)
Humic Substances , Trametes/drug effects , Trametes/growth & development , Trametes/metabolism , Carbon , Humic Substances/analysis , Microscopy, Electron, Scanning , Mycology/methods , Reactive Oxygen Species/metabolism , Trametes/ultrastructure
10.
Appl Environ Microbiol ; 76(18): 6223-30, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20639375

ABSTRACT

The primary goal of this paper is to demonstrate potential strengths of the use of tritium-labeled humic substances (HS) to quantify their interaction with living cells under various conditions. A novel approach was taken to study the interaction between a model microorganism and the labeled humic material. The bacterium Escherichia coli was used as a model microorganism. Salt stress was used to study interactions of HS with living cells under nonoptimum conditions. Six tritium-labeled samples of HS originating from coal, peat, and soil were examined. To quantify their interaction with E. coli cells, bioconcentration factors (BCF) were calculated and the amount of HS that penetrated into the cell interior was determined, and the liquid scintillation counting technique was used as well. The BCF values under optimum conditions varied from 0.9 to 13.1 liters kg(-1) of cell biomass, whereas under salt stress conditions the range of corresponding values increased substantially and accounted for 0.2 to 130 liters kg(-1). The measured amounts of HS that penetrated into the cells were 23 to 167 mg and 25 to 465 mg HS per kg of cell biomass under optimum and salt stress conditions, respectively. This finding indicated increased penetration of HS into E. coli cells under salt stress.


Subject(s)
Escherichia coli/metabolism , Humic Substances/analysis , Sodium Chloride/chemistry , Stress, Physiological/physiology , Carbon/analysis , Chromatography, Gel , Escherichia coli/chemistry , Hydrogen/analysis , Magnetic Resonance Spectroscopy , Nitrogen/analysis , Scintillation Counting , Tritium
11.
Environ Sci Technol ; 37(11): 2477-85, 2003 Jun 01.
Article in English | MEDLINE | ID: mdl-12831033

ABSTRACT

Recorded molecular weights (MWs) for humic substances (HS) range from a few hundred to millions of daltons. For purposes of defining HS as a specific class of chemical compounds, it is of particular importance to ascertain if this broad range of MWs can be attributed to actual variability in molecular properties or is simply an artifact of the analytical techniques used to characterize HS. The main objectives of this study were (1)to establish if a preferential range of MWs exists for HS and (2) to determine any consistent MW properties of HS. To reach the goal, we have undertaken an approach to measure under standardized conditions the MW characteristics of a large set of HS from different natural environments. Seventy-seven humic materials were isolated from freshwater, soil, peat, and coal, such that each possessed a different fractional composition: humic acid (HA), fulvic acid (FA), and a nonfractionated mixture of HA and FA (HF). Size exclusion chromatography (SEC) was used as the analytical technique to determine molecular weight characteristics. The MW distributions were characterized by number (Mn) and weight (Mw) average MW, and by polydispersity. The complete range of Mw values varied within 4.7-30.4 kDa. The maximum Mw values were observed for peat HF and soil HA, whereas the smallest weights were measured for river water HF. Maximum values of polydispersity (3.5-4.4) were seen for peat HF and soil HA, while much lower values (1.6-3.1) were found for all preparations isolated with XAD-resins. Statistical evaluation showed consistent Mw and Mn variations with the HS source, while polydispersity was mostly a function of the isolation procedure used. A conclusion was made that HS have a preferential range of MW values that could characterize them as a specific class of chemical compounds.


Subject(s)
Humic Substances/chemistry , Chromatography, Gel , Environment , Molecular Weight
12.
Environ Sci Technol ; 36(17): 3720-4, 2002 Sep 01.
Article in English | MEDLINE | ID: mdl-12322743

ABSTRACT

Partition coefficients for the binding affinities of atrazine to 16 different humic materials were determined by the ultrafiltration HPLC technique. Sources included humic acids (HA), fulvic acids (FA), and combined humic and fulvic fractions (HF) from soil, peat, and coal humic acid. Each of the humic materials was characterized by elemental composition, molecular weight, and composition of main structural fragments determined by 13C solution-state NMR. The magnitude of K(OC) values varied from 87 to 575 L/kg of C, demonstrating relatively low binding affinity of humic substances (HS) for atrazine. On the basis of the measured K(OC) values, the humic materials can be arranged in the following order: coal HA approximately = gray wooded soil HA > chernozemic soil HA and HF > sod-podzolic soil HA approximately = peat HF > sod-podzolic soil FA >> peat dissolved organic matter. The magnitude of the K(OC) values correlated strongly with the percentage of aromatic carbon in HS samples (r = 0.91). The hydrophobic binding was hypothesized as the key interaction underlying the binding of atrazine to HS.


Subject(s)
Atrazine/chemistry , Coal/analysis , Herbicides/chemistry , Humic Substances/chemistry , Soil Pollutants , Soil/analysis , Benzopyrans/chemistry , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...