Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 8(9)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30231566

ABSTRACT

The surface chemistry and the morphology of SnO2 nanowires of average length and diameter of several µm and around 100 nm, respectively, deposited by vapor phase deposition (VPD) method on Au-covered Si substrate, were studied before and after subsequent air exposure. For this purpose, surface-sensitive methods, including X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS) and the scanning electron microscopy (SEM), were applied. The studies presented within this paper allowed to determine their surface non-stoichiometry combined with the presence of carbon contaminations, in a good correlation with their surface morphology. The relative concentrations of the main components [O]/[Sn]; [C]/[Sn]; [Au]/[Sn], together with the O⁻Sn; O⁻Si bonds, were analyzed. The results of TDS remained in a good agreement with the observations from XPS. Moreover, conclusions obtained for SnO2 nanowires deposited with the use of Au catalyst were compared to the previous obtained for Ag-assisted tin dioxide nanowires. The information obtained within these studies is of a great importance for the potential application of SnO2 nanowires in the field of novel chemical nanosensor devices, since the results can provide an interpretation of how aging effects influence gas sensor dynamic characteristics.

2.
Materials (Basel) ; 11(1)2018 Jan 14.
Article in English | MEDLINE | ID: mdl-29342888

ABSTRACT

In this paper, the results of detailed X-ray photoelectron spectroscopy (XPS) studies combined with atomic force microscopy (AFM) investigation concerning the local surface chemistry and morphology of nanostructured ZnO thin films are presented. They have been deposited by direct current (DC) reactive magnetron sputtering under variable absolute Ar/O2 flows (in sccm): 3:0.3; 8:0.8; 10:1; 15:1.5; 20:2, and 30:3, respectively. The XPS studies allowed us to obtain the information on: (1) the relative concentrations of main elements related to their surface nonstoichiometry; (2) the existence of undesired C surface contaminations; and (3) the various forms of surface bondings. It was found that only for the nanostructured ZnO thin films, deposited under extremely different conditions, i.e., for Ar/O2 flow ratio equal to 3:0.3 and 30:3 (in sccm), respectively, an evident and the most pronounced difference had been observed. The same was for the case of AFM experiments. What is crucial, our experiments allowed us to find the correlation mainly between the lowest level of C contaminations and the local surface morphology of nanostructured ZnO thin films obtained at the highest Ar/O2 ratio (30:3), for which the densely packaged (agglomerated) nanograins were observed, yielding a smaller surface area for undesired C adsorption. The obtained information can help in understanding the reason of still rather poor gas sensor characteristics of ZnO based nanostructures including the undesired ageing effect, being of a serious barrier for their potential application in the development of novel gas sensor devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...