Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Gels ; 9(12)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38131953

ABSTRACT

Aerogels are three-dimensional solid networks with incredibly low densities, high porosity, and large specific surface areas. These aerogels have both nanoscale and macroscopic interior structures. Combined with graphene, the aerogels show improved mechanical strength, electrical conductivity, surface area, and adsorption capacity, making them ideal for various biomedical applications. The graphene aerogel has a high drug-loading capacity due to its large surface area, and the porous structure enables controlled drug release over time. The presence of graphene makes it a suitable material for wound dressings, blood coagulation, and bilirubin adsorption. Additionally, graphene's conductivity can help in the electrical stimulation of cells for improved tissue regeneration, and it is also appropriate for biosensors. In this review, we discuss the preparation and advantages of graphene-based aerogels in wound dressings, drug delivery systems, bone regeneration, and biosensors.

2.
Langmuir ; 37(49): 14527-14539, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34855404

ABSTRACT

We report on the development of an electroformation technique for the preparation of particulate (particle-based) emulsions. These oil-in-water (here, lipid phase acts as an "oil") emulsions were prepared using nonlamellar lipid phases. Such emulsion particles offer high hydrophobic volumes compared to conventional lipid particles based on lamellar phases (vesicles/liposomes). In addition, the tortuous internal nanostructure contributes through greater surface area per volume of lipid particles allowing an enhanced loading of payloads. The electroformation method makes use of a capacitor formed from two indium tin oxide coated conductive glass surfaces separated by a dielectric aqueous medium. This capacitor setup is enclosed in a custom-designed 3D-printed unit. Lipid molecules, deposited on conductive surfaces, self-assemble into a nanostructure in the presence of an aqueous medium, which when subjected to an alternating current electric field forms nano- and/or microparticles. Optical microscopy, dynamic light scattering, and small-angle X-ray scattering techniques were employed for micro- and nanostructural analyses of electroformed particles. With this method, it is possible to produce particulate emulsions at a very low (e.g., 0.0005 wt % or 0.5 mg/mL) lipid concentration. We demonstrate an applicability of the electroformation method for drug delivery by preparing lipid particles with curcumin, which is a highly important but water-insoluble medicinal compound. As the method employs gentle conditions, it is potentially noninvasive for the delivery of delicate biomolecules and certain drugs, which are prone to decomposition or denaturation due to the high thermomechanical energy input and/or nonaqueous solvents required for existing methods.


Subject(s)
Lipids , Nanostructures , Emulsions , Particle Size , Solvents , Water
3.
Int J Biol Macromol ; 183: 203-212, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33915212

ABSTRACT

The world is currently facing a novel coronavirus (SARS-CoV-2) pandemic. The greatest threat that is disrupting the normal functioning of society is the exceptionally high species independent transmission. Drug repurposing is understood to be the best strategy to immediately deploy well-characterized agents against new pathogens. Several repurposable drugs are already in evaluation for determining suitability to treat COVID-19. One such promising compound includes heparin, which is widely used in reducing thrombotic events associated with COVID-19 induced pathology. As part of identifying target-specific antiviral compounds among FDA and world-approved libraries using high-throughput virtual screening (HTVS), we previously evaluated top hits for anti-SARS-CoV-2 activity. Here, we report results of highly efficacious viral entry blocking properties of heparin (IC50 = 12.3 nM) in the complete virus assay, and further, propose ways to use it as a potential transmission blocker. Exploring further, our in-silico analysis indicated that the heparin interacts with post-translational glycoconjugates present on spike proteins. The patterns of accessible spike-glycoconjugates in open and closed states are completely contrasted by one another. Heparin-binding to the open conformation of spike structurally supports the state and may aid ACE2 binding as reported with cell surface-bound heparan sulfate. We also studied spike protein mutant variants' heparin interactions for possible resistance. Based on available data and optimal absorption properties by the skin, heparin could potentially be used to block SARS-CoV-2 transmission. Studies should be designed to exploit its nanomolar antiviral activity to formulate heparin as topical or inhalation-based formulations, particularly on exposed areas and sites of primary viremia e.g. ACE2 rich epithelia of the eye (conjunctiva/lids), nasal cavity, and mouth.


Subject(s)
Drug Repositioning , Heparin/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , COVID-19/prevention & control , COVID-19/transmission , Heparin/therapeutic use , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Drug Treatment
4.
Chem Phys Lipids ; 218: 16-21, 2019 01.
Article in English | MEDLINE | ID: mdl-30476486

ABSTRACT

We report the first method to calculate a very important molecular level parameter of amphiphilic molecules- the 'chain splay'. The calculations employed a truncated cone geometry, as it is the most probable configuration adopted by various amphiphiles. This approach utilized known parameters including lipid length, cross-sectional area at the head group and molecular volume. This new parameter, i.e. the area at the chain end, perceived to be more sensitive than Israelachvili's famous shape factor or critical packing parameter (CPP). With relevant calculations, we demonstrate the fundamental roles of 'chain splay' to: a) reveal the critical contribution of molecular structure on average molecular shape and consequent self-assemblies, b) track the finest changes in molecular shapes within different bicontinuous cubic phases, c) obtain non-zero areas at the chain ends of amphiphiles that form normal (type 1) phases, d) back-calculate molecular volumes close to theoretical values, and e) find the link between molecular shapes and global curvatures of self-assemblies. This powerful feature advances our abilities towards quantitative estimation of spatial configurations adopted by amphiphilic molecules; moreover, it has a strong impact on predicting biomembrane structuring and nanoscale design of corresponding self-assemblies for a range of emerging applications.


Subject(s)
Lipids/chemistry , Molecular Dynamics Simulation , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Micelles , Molecular Structure
5.
Langmuir ; 34(45): 13626-13637, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30347980

ABSTRACT

Bile salts (BSs) are important for the digestion and absorption of fats and fat-soluble vitamins in the small intestine. In this work, we scrutinized, with small-angle X-ray scattering (SAXS), the crucial functions of bile salts beyond their capacity for the interfacial stabilization of submicrometer-sized lipid particles. By studying a wide compositional range of BS-lipid dispersions using two widely applied lipids for drug-delivery systems (one a monoglyceride being stabilizer-sensitive and the other an aliphatic alcohol being relatively stabilizer-insensitive), we identified the necessary BS to lipid ratios to guarantee full emulsification. A novel ad hoc developed global small-angle-X-ray scattering analysis method revealed that the addition of BS hardly changes the bilayer thicknesses in bicontinuous phases, while significant membrane thinning is observed in the coexisting fluid lamellar phase. Furthermore, we show that a BS strongly decreases the average critical packing parameter. At increasing BS concentration, the order of phases formed is (i) the bicontinuous diamond cubic ( Pn3 m), (ii) the bicontinuous primitive cubic ( Im3 m), and (iii) the fluid lamellar phase ( Lα). These distinctive findings on BS-driven "emulsification" and "membrane curvature reduction" provide new molecular-scale insights for the understanding of the interfacial action of bile salts on lipid assemblies.


Subject(s)
Bile Acids and Salts/chemistry , Emulsions/chemistry , Fatty Alcohols/chemistry , Glycerides/chemistry , Nanostructures/chemistry , Deoxycholic Acid/chemistry , Micelles , Scattering, Small Angle , Sodium Cholate/chemistry , Viscosity , X-Ray Diffraction
6.
Langmuir ; 33(38): 9907-9915, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28826212

ABSTRACT

Three-dimensionally organized lipid cubic self-assemblies and derived oil-in-water emulsions called "cubosomes" are attractive for various biotechnological applications due to their ability to be loaded with functional molecules and their associated sustained release properties. Here, we employed both of these lipid-based systems for the delivery of a model drug, aspirin, under comparable conditions. Studies were performed by varying drug-to-lipid ratio and the type of release medium, water and phosphate buffer saline (PBS). Release rates were determined using UV-vis spectroscopy, and small-angle X-ray scattering was used to confirm the type of self-assembled nanostructures formed in these lipid systems. The release from the bulk lipid cubic phase was sustained as compared to that of dispersed cubosomes, and the release in PBS was more efficient than in water. The tortuosity of the architecture, length of the diffusion pathway, type of nanostructure, and physicochemical interaction with the release media evidently contribute to these observations. This work is particularly important as it is the first report where both of these nanostructured lipid systems have been studied together under similar conditions. This work provides important insights into understanding and therefore controlling the release behavior of lipid-based drug nanocarriers.


Subject(s)
Aspirin/chemistry , Diffusion , Drug Delivery Systems , Lipids , Nanostructures , Water
7.
Langmuir ; 32(45): 11907-11917, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27782407

ABSTRACT

We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3m), hexagonal (H2), and inverse micellar (L2) phases by regulating the lipid/oil ratio as the hydrostatic pressure was varied from atmospheric pressure to 1200 bar and back to atmospheric pressure. The effects of pressure on these lipid nanoparticles were compared with those on their equilibrium bulk, nondispersed counterparts, namely, inverse nonlamellar liquid-crystalline phases and micellar solutions under excess-water conditions, using the synchrotron small-angle X-ray scattering (SAXS) technique. In the applied pressure range, induced phase transitions were observed solely in fully hydrated bulk samples, whereas the internal self-assemblies of the corresponding lipid nanoparticles displayed only pressure-modulated single phases. Interestingly, both the lattice parameters and the linear pressure expansion coefficients were larger for the self-assemblies enveloped inside the lipid nanoparticles as compared to the bulk states. This behavior can, in part, be attributed to enhanced lipid layer undulations in the lipid particles in addition to induced swelling effects in the presence of the triblock copolymer F127. The bicontinuous cubic phases both in the bulk state and inside lipid cubosome nanoparticles swell on compression, even as both keep swelling further upon decompression at relatively high pressures before shrinking again at ambient pressures. The pressure dependence of the phases is also modulated by the concentration of the solubilized oil (tetradecane). These studies demonstrate the tolerance of lipid nanoparticles [cubosomes, hexosomes, micellar cubosomes, and emulsified microemulsions (EMEs)] for high pressures, confirming their robustness for various technological applications.

8.
J Colloid Interface Sci ; 480: 69-75, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27416287

ABSTRACT

We report on the effect of fullerenes (C60) on the stability of nanostructured lipid emulsions. These (oil-in-water) emulsions are essentially aqueous dispersions of lipid particles exhibiting self-assembled nanostructures at their cores. The majority of previous studies on fullerenes were focused on planar and spherical lipid bilayer systems including pure lipids and liposomes. In this work, fullerenes were interacted with a lipid that forms nanostructured dispersions of non-lamellar self-assemblies. A range of parameters including the composition of emulsions and sonication parameters were examined to determine the influence of fullerenes on in-situ and pre-stabilized lipid emulsions. We found that fullerenes mutually stabilize very low concentrations of lipid molecules, while other concentration emulsions struggle to stay stable or even to form at first instance; we provide hypotheses to support these observations. Interestingly though, we were able to encapsulate varying amounts of fullerenes in sterically stabilized emulsions. This step has a significant positive impact, as we could effectively control an inherent aggregation tendency of fullerenes in aqueous environments. These novel hybrid nanomaterials may open a range of avenues for biotechnological and biomedical applications exploiting properties of both lipid and fullerene nanostructures.


Subject(s)
Fullerenes/chemistry , Lipids/chemistry , Nanostructures/chemistry , Emulsions/chemistry , Particle Size , Surface Properties
9.
J Vis Exp ; (108): 53489, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26967650

ABSTRACT

We present a facile method to prepare nanostructured lipid particles stabilized by carbon nanotubes (CNTs). Single-walled (pristine) and multi-walled (functionalized) CNTs are used as stabilizers to produce Pickering type oil-in-water (O/W) emulsions. Lipids namely, Dimodan U and Phytantriol are used as emulsifiers, which in excess water self-assemble into the bicontinuous cubic Pn3m phase. This highly viscous phase is fragmented into smaller particles using a probe ultrasonicator in presence of conventional surfactant stabilizers or CNTs as done here. Initially, the CNTs (powder form) are dispersed in water followed by further ultrasonication with the molten lipid to form the final emulsion. During this process the CNTs get coated with lipid molecules, which in turn are presumed to surround the lipid droplets to form a particulate emulsion that is stable for months. The average size of CNT-stabilized nanostructured lipid particles is in the submicron range, which compares well with the particles stabilized using conventional surfactants. Small angle X-ray scattering data confirms the retention of the original Pn3m cubic phase in the CNT-stabilized lipid dispersions as compared to the pure lipid phase (bulk state). Blue shift and lowering of the intensities in characteristic G and G' bands of CNTs observed in Raman spectroscopy characterize the interaction between CNT surface and lipid molecules. These results suggest that the interactions between the CNTs and lipids are responsible for their mutual stabilization in aqueous solutions. As the concentrations of CNTs employed for stabilization are very low and lipid molecules are able to functionalize the CNTs, the toxicity of CNTs is expected to be insignificant while their biocompatibility is greatly enhanced. Hence the present approach finds a great potential in various biomedical applications, for instance, for developing hybrid nanocarrier systems for the delivery of multiple functional molecules as in combination therapy or polytherapy.


Subject(s)
Lipids/chemistry , Nanocapsules/chemistry , Nanotubes, Carbon/chemistry , Drug Compounding/methods , Drug Stability , Emulsions/chemistry , Kinetics , Nanocapsules/ultrastructure , Nanostructures/chemistry , Nanotubes, Carbon/ultrastructure , Spectrum Analysis, Raman
10.
Colloids Surf B Biointerfaces ; 129: 47-53, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25819365

ABSTRACT

Biomedical implants made of titanium-based materials are expected to have certain essential features including high bone-to-implant contact and optimum osteointegration, which are often influenced by the surface topography and physicochemical properties of titanium surfaces. The surface structure in the nanoscale regime is presumed to alter/facilitate the protein binding, cell adhesion and proliferation, thereby reducing post-operative complications with increased lifespan of biomedical implants. The novelty of our TiO2 nanostructures lies mainly in the high level control over their morphology and roughness by mere compositional change and optimisation of the experimental parameters. The present work focuses on the wetting behaviour of various nanostructured titanium surfaces towards water. Kinetics of contact area of water droplet on macroscopically flat, nanoporous and nanotubular titanium surface topologies was monitored under similar evaporation conditions. The contact area of the water droplet on hydrophobic titanium planar surface (foil) was found to decrease during evaporation, whereas the contact area of the droplet on hydrophobic nanorough titanium surfaces practically remained unaffected until the complete evaporation. This demonstrates that the surface morphology and roughness at the nanoscale level substantially affect the titanium dioxide surface-water droplet interaction, opposing to previous observations for microscale structured surfaces. The difference in surface topographic nanofeatures of nanostructured titanium surfaces could be correlated not only with the time-dependency of the contact area, but also with time-dependency of the contact angle and electrochemical properties of these surfaces.


Subject(s)
Nanostructures/chemistry , Titanium/chemistry , Wettability , Hydrophobic and Hydrophilic Interactions , Materials Testing , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Surface Properties
11.
Int J Pharm ; 479(2): 416-21, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25578369

ABSTRACT

We report a hybrid system, fabricated from nanostructured lipid particles and polysaccharide based hydrogel, for sustained release applications. Lipid particles were prepared by kinetically stabilizing self-assembled lipid nanostructures whereas the hydrogel was obtained by dissolving kappa-carrageenan (KC) in water. The drug was incorporated in native as well as lipid particles loaded hydrogels, which upon dehydration formed thin films. The kinetics of drug release from these films was monitored by UV-vis spectroscopy while the films were characterized by Fourier transform infra-red (FTIR) spectroscopy and small angle X-ray scattering techniques. Pre-encapsulation of a drug into lipid particles is demonstrably advantageous in certain ways; for instance, direct interactions between KC and drug molecules are prohibited due to the mediation of hydrophobic forces generated by lipid tails. Rapid diffusion of small drug molecules from porous hydrogel network is interrupted by their encapsulation into rather large sized lipid particles. The drug release from the lipid-hydrogel matrix was sustained by an order of magnitude timescale with respect to the release from native hydrogel films. These studies form a strong platform for the development of combined carrier systems for controlled therapeutic applications.


Subject(s)
Hydrogels , Lipids/chemistry , Nanostructures , Polysaccharides/chemistry , Carrageenan/chemistry , Delayed-Action Preparations , Diffusion , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Particle Size , Porosity , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
12.
Nanoscale ; 7(3): 1090-5, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25475215

ABSTRACT

Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 µm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs.


Subject(s)
Lipids/chemistry , Liposomes/chemistry , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Drug Compounding/methods , Drug Stability , Excipients/chemistry , Materials Testing , Particle Size
13.
Nanoscale ; 5(19): 8992-9000, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23832119

ABSTRACT

We present the fabrication of lipid nanoscaffolds inside carbon nanotube arrays by employing the nanostructural self-assembly of lipid molecules. The nanoscaffolds are finely tunable into model biomembrane-like architectures (planar), soft nanochannels (cylindrical) or 3-dimensionally ordered continuous bilayer structures (cubic). Carbon nanotube arrays hosting the above nanoscaffolds are formed by packing of highly oriented multiwalled carbon nanotubes which facilitate the alignment of lipid nanostructures without requiring an external force. Furthermore, the lipid nanoscaffolds can be created under both dry and hydrated conditions. We show their direct application in reconstitution of egg proteins. Such nanoscaffolds find enormous potential in bio- and nano-technological fields.


Subject(s)
Lipids/chemistry , Nanotubes, Carbon/chemistry , Animals , Chickens , Hydrogen/chemistry , Ovalbumin/chemistry , Scattering, Radiation , Temperature , X-Ray Diffraction
14.
Langmuir ; 29(1): 355-64, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23214950

ABSTRACT

We characterize a recently introduced novel nanobilayer technique [Gornall, J. L., Mahendran, K. R., Pambos, O. J., Steinbock, L. J., Otto, O., Chimerel, C., Winterhalter, M., and Keyser, U. F. Simple reconstitution of protein pores in nano lipid bilayers. Nano Lett. 2011, 11 (8), 3334-3340] and its practical aspects for incorporating the biological nanopore α-hemolysin from Staphylococcus aureus and subsequent studies on the translocation of biomolecules under various conditions. This technique provides advantages over classical bilayer methods, especially the quick formation and extended stability of a bilayer. We have also developed a methodology to prepare a uniform quality of giant unilamellar vesicles (GUVs) in a reproducible way for producing nanobilayers. The process and the characteristics of the reconstitution of α-hemolysin in nanobilayers were examined by exploiting various important parameters, including pH, applied voltage, salt concentration, and number of nanopores. Protonation of α-hemolysin residues in the low pH region affects the translocation durations, which, in turn, changes the statistics of event types as a result of electrostatics and potentially the structural changes in DNA. When the pH and applied voltage were varied, it was possible to investigate and partly control the capture rates and type of translocation events through α-hemolysin nanopores. This study could be helpful to use the nanobilayer technique for further explorations, particularly owing to its advantages and technical ease compared to existing bilayer methods.


Subject(s)
DNA/chemistry , Lipid Bilayers/chemistry , Nanopores , Combinatorial Chemistry Techniques , DNA/classification , Hemolysin Proteins/chemistry , Hydrogen-Ion Concentration , Translocation, Genetic
15.
Nanoscale ; 4(19): 5779-91, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22899223

ABSTRACT

Lipid crystallization is ubiquitous in nature, observed in biological structures as well as in commercial products and applications. In a dehydrated state most of the lipids form well ordered crystals, whereas in an aqueous environment they self-assemble into various crystalline, liquid crystalline or sometimes macroscopically disordered phases. Lipid self-organization extends further to hierarchical levels including structured emulsions and nanostructured particles. Many consumer products including cosmetics, foods and medicines account for such lipid architectures. Cell membranes primarily consist of planar lipid bilayers; however sub-cellular biomembranes are more of a convoluted type. Some of the biological entities have lipids in truly crystalline form; yet liquid crystalline lipid phases are prevalent, in general. Crystallization of fats - triglyceride lipids - has been relatively well documented and reviewed more often, but this review features other areas where lipid organization is crucial and diverse. Some recent advances along with a few explicit examples of model lipid phases and biological evidences are also reported.


Subject(s)
Lipids/chemistry , Animals , Cholesterol/chemistry , Crystallization , Glycerides/chemistry , Humans , Lipid Bilayers/chemistry , Nanostructures/chemistry , Scattering, Small Angle , Triglycerides/chemistry , Water/chemistry , X-Ray Diffraction
16.
Langmuir ; 27(19): 11790-800, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21846133

ABSTRACT

In recent years, lipid based nanostructures have increasingly been used as model membranes to study various complex biological processes. For better understanding of such phenomena, it is essential to gain as much information as possible for model lipid structures under physiological conditions. In this paper, we focus on one of such lipids--monoelaidin (ME)--for its polymorphic nanostructures under varying conditions of temperature and water content. In the recent contribution (Soft Matter, 2010, 6, 3191), we have reported the phase diagram of ME above 30 °C and compared with the phase behavior of other lipids including monoolein (MO), monovaccenin (MV), and monolinolein (ML). Remarkable phase behavior of ME, stabilizing three bicontinuous cubic phases, motivates its study at low temperatures. Current studies concentrate on the low-temperature (<30 °C) behavior of ME and subsequent reconstruction of its phase diagram over the entire temperature-water composition space (temperature, 0-76 °C; and water content, 0-70%). The polymorphs found for the monoelaidin-water system include three bicontinuous cubic phases, i.e., Ia3d, Pn3m, and Im3m, and lamellar phases which exhibit two crystalline (L(c1) and L(c0)), two gel (L(ß) and L(ß*)), and a fluid lamellar (L(α)) states. The fluid isotropic phase (L(2)) was observed only for lower hydrations (<20%), whereas hexagonal phase (H(2)) was not found under studied conditions. Nanostructural parameters of these phases as a function of temperature and water content are presented together with some molecular level calculations. This study might be crucial for perception of the lyotropic phase behavior as well as for designing nanostructural assemblies for potential applications.


Subject(s)
Glycerides/chemistry , Nanostructures/chemistry , Temperature , Water/chemistry , Molecular Structure , X-Ray Diffraction
17.
Langmuir ; 27(15): 9541-50, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21668004

ABSTRACT

Lipid-based equilibrium self-assemblies and their hierarchically ordered forms have been known since the last few decades. Related progress in colloids and interface science led the development of oil-in-water type internally self-assembled lipid particles, known as Isasomes, which have aroused great interest in biotechnological applications. These submicrometer-sized lipid particles are internally nanostructured in a form of various liquid-crystalline or microemulsion phases, which facilitate their loading with hydrophilic, hydrophobic, and amphiphilic molecules. Their internal nanostructure can also be finely tuned. Recently, it has been shown that Isasomes can be entrapped in thermoreversible polysaccharide hydrogels. Herein, we report on the immobilization of Isasomes in solid polysaccharide films prepared by drying particle-loaded κ-carrageenan and methyl cellulose-based hydrogels. These rather simple but elegant media facilitate the storage of these functional particles and their subsequent release by simple resolubilization in water and/or thermal transitions. Systematic rehydration studies of such Isasome-loaded films have shown that the Isasomes can be remobilized and/or recovered after resolubilization of loaded films, even after several months.


Subject(s)
Lipids/chemistry , Membranes, Artificial , Nanostructures/chemistry , Polysaccharides/chemistry , Particle Size , Surface Properties
19.
Phys Chem Chem Phys ; 13(8): 3004-21, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21183976

ABSTRACT

During the last few years, there has been an extraordinary increase in publications describing the manifold applications of monoolein, one of the most important lipids in the fields of drug delivery, emulsion stabilization and protein crystallization. In this perspective we present a comprehensive review of the phase behavior of this 'magic lipid'. An account of various mesophases formed in the presence of water and a collection of formulae for the calculation of their nano-structural parameters are provided. Effects of chemical and biological molecules including lipids, detergents, salts, sugars, proteins and DNA on the classical behavior are also discussed. Physicochemical triggers such as, temperature, pressure and shearing modulate the phase behavior of monoolein self assemblies that are covered in subsequent sections. Finally the growing applications of monoolein in various fields are also reported.


Subject(s)
Glycerides/chemistry , Crystallization , Electrolytes , Lipids/chemistry , Micelles , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...