Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38862091

ABSTRACT

Over the past decade, there has been an increase in accelerated drug development with successful regulatory approval that has provided rapid access of novel medicines to patients world-wide. This has created the opportunity for the pharmaceutical industry to continuously improve the process of quickly bringing new medicines to patients with unmet medical needs. This can be accomplished through sharing the learnings and advancements in drug development, enhancing regulatory interactions, and collaborating with academics on developing the underlying science to reduce drug development timelines. In this paper, the IQ Consortium - Accelerated Drug Development working group members intend to share recommendations for optimizing strategies that build efficiencies in accelerated pathways for regulatory approval. Information was obtained by surveying member pharmaceutical companies with respect to recent expedited submissions within the past 5 years to gain insights as to which development strategies were successful. The learnings from this analysis are provided, which includes shared learnings in formulation development, stability, analytical methods, manufacturing, and importation testing as well as regulatory considerations. Each of these sections provide a summary illustrating the key data collected as well as a discussion that is aimed to guide pharmaceutical companies on strategies to consider streamlining development activities and expedite the drug to market.

2.
J Pharm Sci ; 105(10): 3105-3114, 2016 10.
Article in English | MEDLINE | ID: mdl-27492963

ABSTRACT

Control and optimization of the physical properties of a drug substance (DS) are critical to the development of robust drug product manufacturing processes and performance. A lack of isolatable, for example, crystalline, DS solid forms can present challenges to achieving this control. In this study, an isolation scheme for an amorphous DS was developed and integrated into the synthetic route producing DS with optimized properties. An inert absorbent excipient (Neusilin® US2) was used to isolate the DS via a novel antisolvent scheme as the final step of the route. Isolation was executed at kilogram scale utilizing conventional equipment. The resulting 50 wt% DS:Neusilin complex had improved physical stability and exceptional micromeritic and tableting properties. Improved dissolution was observed and attributed to enhanced dispersion and increased surface area. Characterization data suggest a high degree of penetration of the DS into the Neusilin, with DS occupying 70% of mesopore and 12% of macropore volume. This approach has application in the isolation and particle engineering of difficult to isolate DS without additional unit operation, such as spray drying, and has the potential for a high degree of optimization and control of physical properties over the course of DS development.


Subject(s)
Aluminum Compounds/chemistry , Aluminum Compounds/isolation & purification , Magnesium Compounds/chemistry , Magnesium Compounds/isolation & purification , Silicates/chemistry , Silicates/isolation & purification , Aluminum Silicates/chemistry , Aluminum Silicates/isolation & purification , Compressive Strength , Magnesium/chemistry , Magnesium/isolation & purification , Particle Size , Surface Properties , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...