Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28932758

ABSTRACT

PURPOSE: To test and evaluate an efficient iterative image processing strategy to improve the quality of sub-optimal pre-clinical PET images. A novel iterative resolution subsets-based method to reduce noise and enhance resolution (RSEMD) has been demonstrated on examples of PET imaging studies of Alzheimer's disease (AD) plaques deposition in mice brains. MATERIALS AND METHODS: The RSEMD method was applied to imaging studies of non-invasive detection of beta-amyloid plaque in transgenic mouse models of AD. Data acquisition utilized a Siemens Inveon® micro PET/CT device. Quantitative uptake of the tracer in control and AD mice brains was determined by counting the extent of plaque deposition by histological staining. The pre-clinical imaging software inviCRO® was used for fitting the recovery PET images to the mouse brain atlas and obtaining the time activity curves (TAC) from different brain areas. RESULTS: In all of the AD studies the post-processed images proved to have higher resolution and lower noise as compared with images reconstructed by conventional OSEM method. In general, the values of SNR reached a plateau at around 10 iterations with an improvement factor of about 2 over sub-optimal PET brain images. CONCLUSIONS: A rapidly converging, iterative deconvolution image processing algorithm with a resolution subsets-based approach RSEMD has been used for quantitative studies of changes in Alzheimer's pathology over time. The RSEMD method can be applied to sub-optimal clinical PET brain images to improve image quality to diagnostically acceptable levels and will be crucial in order to facilitate diagnosis of AD progression at the earliest stages.

2.
Expert Opin Drug Deliv ; 12(4): 669-88, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25341410

ABSTRACT

INTRODUCTION: The ever-increasing developments in pharmaceutical formulations have led to the widespread use of biodegradable polymers in various forms and configurations. In particular, interpenetrating network (IPN) and semi-IPN polymer structures that are capable of releasing drugs in a controlled manner have gained much wider importance in recent years. AREAS COVERED: Recently, IPNs and semi-IPNs have emerged as innovative materials of choice in controlled release (CR) of drugs as the release from these systems depends on pH of the media and temperature in addition to the nature of the system. These networks can be prepared as smart hydrogels following chemical or physical crosslinking methods to show remarkable drug release patterns compared to single polymer systems. EXPERT OPINION: A large number of IPNs and semi-IPNs have been reported in the literature. The present review is focused on the preparation methods and their CR properties with reference to anticancer, anti-asthmatic, antibiotic, anti-inflammatory, anti-tuberculosis and antihypertensive drugs, as majority of these drugs have been reported to be the ideal choices for using IPNs and semi-IPNs.


Subject(s)
Hydrogels , Pharmaceutical Preparations/administration & dosage , Polymers/chemistry , Animals , Delayed-Action Preparations , Humans , Temperature
3.
J Nucl Med ; 55(7): 1204-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24868106

ABSTRACT

UNLABELLED: Despite promise for the use of antibodies as molecular imaging agents in PET, their long in vivo half-lives result in poor contrast and radiation damage to normal tissue. This study describes an approach to overcome these limitations. METHODS: Mice bearing human epidermal growth factor receptor type 2 (HER2)-overexpressing tumors were injected with radiolabeled ((124)I, (125)I) HER2-specific antibody (pertuzumab). Pertuzumab injection was followed 8 h later by the delivery of an engineered, antibody-based inhibitor of the receptor, FcRn. Biodistribution analyses and PET were performed at 24 and 48 h after pertuzumab injection. RESULTS: The delivery of the engineered, antibody-based FcRn inhibitor (or Abdeg, for antibody that enhances IgG degradation) results in improved tumor-to-blood ratios, reduced systemic exposure to radiolabel, and increased contrast during PET. CONCLUSION: Abdegs have considerable potential as agents to stringently regulate antibody dynamics in vivo, resulting in increased contrast during molecular imaging with PET.


Subject(s)
Antibodies, Monoclonal, Humanized/metabolism , Immunoglobulin Fc Fragments/metabolism , Positron-Emission Tomography , Protein Engineering , Signal-To-Noise Ratio , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibody Specificity , Cell Line, Tumor , Female , Half-Life , Humans , Immunoglobulin Fc Fragments/immunology , Mice , Receptor, ErbB-2/immunology , Receptors, Fc/metabolism
4.
Int J Alzheimers Dis ; 20092010 Jan 27.
Article in English | MEDLINE | ID: mdl-20721294

ABSTRACT

Detecting aggregated amyloid peptides (Abeta plaques) presents targets for developing biomarkers of Alzheimer's disease (AD). Polymeric n-butyl-2-cyanoacrylate (PBCA) nanoparticles (NPs) were encapsulated with radiolabelled amyloid affinity (125)I-clioquinol (CQ, 5-chloro-7-iodo-8-hydroxyquinoline) as in vivo probes. (125)I-CQ-PBCA NPs crossed the BBB (2.3 +/- 0.9 ID/g) (P < .05) in the WT mouse (N = 210), compared to (125)I-CQ (1.0 +/- 0.4 ID/g). (125)I-CQ-PBCA NP brain uptake increased in AD transgenic mice (APP/PS1) versus WT (N = 38; 2.54 x 10(5) +/- 5.31 x 10(4) DLU/mm(2); versus 1.98 x 10(5) +/- 2.22 x 10(4) DLU/mm(2)) and in APP/PS1/Tau. Brain increases were in mice intracranially injected with aggregated Abeta(42) peptide (N = 17; 7.19 x 10(5) +/- 1.25 x 10(5) DLU/mm(2)), versus WT (6.07 x 10(5) +/- 7.47 x 10(4) DLU/mm(2)). Storage phosphor imaging and histopathological staining of the plaques, Fe(2+) and Cu(2+), validated results. (125)I-CQ-PBCA NPs have specificity for Abeta in vitro and in vivo and are promising as in vivo SPECT ((123)I), or PET ((124)I) amyloid imaging agents.

5.
Article in English | MEDLINE | ID: mdl-20049829

ABSTRACT

A survey of research activity on nanoparticles (NPs) based on polymeric devices that could cross the blood-brain barrier (BBB) is given along with the presentation of our own data on the development of NPs of n-butyl-2-cyanoacrylate (BCA) for brain delivery to aid the early diagnosis of Alzheimer's disease (AD), a neurodegenerative disorder of the elderly people, the most prevalent form of dementia. Typical data are presented on in vivo detection of amyloid peptides (A beta) (amyloid plaques) that are used as targets for developing the biological markers for the diagnosis of AD. In order to develop efficient in vivo probes, polymeric n-butyl-2-cyanoacrylate (PBCA) NPs have been prepared and encapsulated with the radio-labeled amyloid affinity drug (125)I-clioquinol (CQ, 5-chloro-7-iodo-8-hydroxyquinoline) to improve the transport to brain and amyloid plaque retention of (125)I-CQ using the NPs of PBCA. The (125)I-CQ discriminately binds to the AD post-mortem brain tissue homogenates versus control. (125)I-CQ-PBCA NPs labeled the A beta plaques from the AD human post-mortem frontal cortical sections on paraffin-fixed slides. Storage phosphor imaging verified preferential uptake by AD brain sections compared to cortical control sections. The (125)I-CQ-PBCA NPs crossed the BBB in wild type mouse, giving an increased brain uptake measured in terms of % ID/g i.e., injected dose compared to (125)I-CQ. Brain retention of (125)I-CQ-PBCA NPs was significantly increased in the AD transgenic mice (APP/PS1) and in mice injected with aggregated A beta 42 peptide versus age-matched wild type controls. The results of this study are verified by in vivo storage phosphor imaging and validated by histopathological staining of plaques and select metal ions, viz. Fe(2+) and Cu(2+). The (125)I-CQ-PBCA NPs had more efficient brain entry and rapid clearance in normal mice and enhanced the retention in AD mouse brain demonstrating the ideal in vivo imaging characteristics. The (125)I-CQ-PBCA NPs exhibited specificity for A beta plaques both in vitro and in vivo. This combination offered radio-iodinated CQ-PBCA NPs as the promising delivery vehicle for in vivo single photon emission tomography (SPECT) ((123)I) or PET ((124)I) amyloid imaging agent. The importance of the topic in relation to brain delivery and other similar type of work published in this area are covered to highlight the importance of this research to medical disciplines.


Subject(s)
Alzheimer Disease/diagnosis , Brain/pathology , Enbucrilate , Nanoparticles , Quinolines , Alzheimer Disease/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Drug Delivery Systems/methods , Enbucrilate/pharmacokinetics , Humans , Mice , Mice, Transgenic , Quinolines/pharmacokinetics
6.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 6): o1117, 2008 May 21.
Article in English | MEDLINE | ID: mdl-21202628

ABSTRACT

The non-H atoms of the title mol-ecule, C(10)H(8)BrNO, are essentially coplanar. In the crystal structure, mol-ecules are linked by weak inter-molecular C-H⋯π(arene) inter-actions, forming one-dimensional chains along the a axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...