Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36433104

ABSTRACT

An amorphous solid dispersion (ASD) of carvedilol (CVL) was prepared via the solvent evaporation method, using cellulose derivatives as polymeric precipitation inhibitors (PPIs). The prepared ASDs existed in the amorphous phase, as revealed by X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The Fourier-transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) results confirmed the compatibility between CVL and the polymers used. The ASDs characteristics were evaluated, with no change in viscosity, a pH of 6.8, a polydispersity index of 0.169, a particle size of 423-450 nm, and a zeta potential of 3.80 mV. Crystal growth inhibition was assessed for 180 min via an infusion precipitation study in simulated intestinal fluid (SIF). The interactions between the drug and polymers were established in great detail, using nuclear magnetic resonance (NMR) spectroscopy, nuclear Overhauser effect spectroscopy (NOESY), and Raman spectroscopy studies. Dielectric analysis was employed to determine the drug-polymer interactions between ion pairs and to understand ion transport behavior. In vivo oral kinetics and irritation studies performed on Wistar rats have demonstrated promising biocompatibility, stability, and the enhanced bioavailability of CVL. Collectively, the stable ASDs of CVL were developed using cellulose polymers as PPIs that would inhibit drug precipitation in the gastrointestinal tract and would aid in achieving higher in vivo drug stability and bioavailability.

2.
Curr Drug Targets ; 18(1): 108-118, 2017.
Article in English | MEDLINE | ID: mdl-26424399

ABSTRACT

Nanotechnology and nanomedicines are emerging research meadows; which chiefly focuses on creating and manipulating materials at a nanometer level for the betterment in imaging, diagnosis and treatment of a range of diseases together with cancer. Cyclodextrin-based nanosponges, anticipated as a new-fangled nanosized delivery system, are ground-breaking hyper-crosslinked cyclodextrin polymers nanostructured within a three-dimensional network. Nanosponges based systems hold the potential of elevating the solubility, absorption, penetration, bioavailability, in vivo stability, targeted as well as sustained delivery, and therapeutic efficiency of numerous anticancer agents. The extension of nanosponges based drug delivery systems is an exhilarating and demanding research pasture, predominantly to overcome aforementioned problems allied to existing anticancer formulations and for the further progressions in cancer therapies. Nanosponges in cancer therapy, particularly cyclodextrin based nanosponges are brought up in this review. By quoting diverse attempts made in pertinent direction, efforts have been made to exemplify the characteristics, suitability and versatility of cyclodextrin based nanosponges for their promising applications in cancer treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Cellulose/chemistry , Cyclodextrins/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Chemistry, Pharmaceutical , Clinical Trials as Topic , Drug Delivery Systems/methods , Humans , Nanostructures , Particle Size
3.
Curr Drug Targets ; 18(14): 1598-1621, 2017.
Article in English | MEDLINE | ID: mdl-27033193

ABSTRACT

BACKGROUND: Parasitic infection such as leishmaniasis, a neglected tropical disease, presents a significant global burden which is responsible for high mortality rate especially in less developed countries. Its intracellular nature and disseminated locations of parasite, limited number of chemotherapeutic agents, increasing incidences of resistance to first line drugs and toxicities, pose a great challenge to formulation scientists that have necessitated effective management of leishmanial infection by modulating the delivery of existing drugs. Over the past decade, research on development of alternative treatments such as nanotechnology-based drug delivery systems (nanoparticles, nanosuspensions, liposomes etc.), use of natural products as well as development of antileishmanial vaccine has been extensively investigated. OBJECTIVE: The present review focuses on different facets of therapeutic strategies, existing miscellaneous drug delivery systems and approaches intended for management, as well as treatment of the infection, with an objective to summarize the current trends and strategies adopted for antileishmanial therapy in a systematic manner. Moreover, the article encloses an eclectic collection of patents allied to new-fangled chemotherapeutics for antileishmanial therapy. CONCLUSION: The reported miscellaneous novel drug delivery systems along with the diverse approaches are seem to be precise, secure and relatively effective; and in an outcome, could lead to the new track for management of leishmaniasis.


Subject(s)
Antiprotozoal Agents/administration & dosage , Drug Carriers/chemistry , Leishmaniasis/drug therapy , Nanostructures/chemistry , Neglected Diseases/drug therapy , Antiprotozoal Agents/therapeutic use , Drug Delivery Systems/trends , Humans , Leishmania/drug effects , Leishmania/metabolism , Leishmaniasis/parasitology , Reactive Oxygen Species/metabolism
4.
Curr Drug Targets ; 17(3): 337-52, 2016.
Article in English | MEDLINE | ID: mdl-25944014

ABSTRACT

Cervical cancer is uterine cervix carcinoma, the second deadly cancer and has a high incidence and mortality rate. In the developing world conventional treatment strategies such as surgical intervention and chemoradiotherapy are less widely available. Currently cancer research focuses on improving treatment of cervical cancer using various therapies such as gene therapy, recombinant protein therapy, photodynamic therapy, photothermal therapy and delivery of chemotherapeutic agents using nanoparticles, hydrogel and liposomal based delivery systems and also localized delivery systems which exist in a variety of forms such as intravaginal rings, intravaginal patches, intravaginal films, etc. in order to improve the drug delivery in a controlled manner to the diseased site thereby reducing systemic side effects. The present review encloses existing diverse delivery systems and approaches intended for treatment of cervical cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Uterine Cervical Neoplasms/drug therapy , Administration, Intravaginal , Combined Modality Therapy , Drug Delivery Systems/adverse effects , Female , Genetic Therapy , Humans
5.
Saudi Pharm J ; 23(5): 562-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26594124

ABSTRACT

The motive behind present work was to formulate and evaluate gel containing microsponges of diclofenac diethylamine to provide prolonged release for proficient arthritis therapy. Quasi-emulsion solvent diffusion method was implied using Eudragit RS-100 and microsponges with varied drug-polymer ratios were prepared. For the sake of optimization, diverse factors affecting microparticles physical properties were too investigated. Microsponges were characterized by SEM, DSC, FT-IR, XRPD and particle size analysis, and evaluated for morphology, drug loading, in vitro drug release and ex vivo diffusion as well. There were no chemical interactions between drug and polymers used as revealed by compatibility studies outcomes. The drug polymer ratio reflected notable effect on drug content, encapsulation efficiency and particle size. SEM results revealed spherical microsponges with porous surface, and had 7.21 µm mean particle size. The microsponges were then incorporated in gel; which exhibited viscous modulus along with pseudoplastic behavior. In vitro drug release results depicted that microsponges with 1:2 drug-polymer ratio were more efficient to give extended drug release of 75.88% at the end of 8 h; while conventional formulation get exhausted incredibly earlier by releasing 81.11% drug at the end of 4 h only. Thus the formulated microsponge-based gel of diclofenac diethylamine would be a promising alternative to conventional therapy for safer and efficient treatment of arthritis and musculoskeletal disorders.

6.
Curr Drug Deliv ; 12(5): 504-16, 2015.
Article in English | MEDLINE | ID: mdl-25675339

ABSTRACT

The rationale behind present work was to formulate a novel cream containing microsponges of miconazole nitrate to provide prolonged release. By means of quasi-emulsion solvent diffusion method using Eudragit RS-100 with different drug-polymer ratios microsponges were prepared. In the direction of optimizing microsponge formulation, diverse factors that affect microparticles physical properties were also investigated. Microsponges were characterized by SEM, DSC, FT-IR and particle size analysis, and also evaluated for morphology, drug loading and in vitro drug release. The drug polymer ratio reflected notable effect on drug content, encapsulation efficiency and particle size. It has been found that there was no chemical interaction between drug and polymers used as revealed by FT-IR and DSC spectra. SEM micrographs exposed that microsponges were spherical, with porous surface and have had 26.23 µm mean particle size. The microsponges were then incorporated in cream; which showed viscous modulus along with pseudoplastic behavior. In vitro drug release results depicted that microsponge with drug-polymer ratio of 1:2 was more efficient to give extended drug release of 78.28% at the end of 8 h; while conventional formulations get exhausted incredibly earlier by releasing 83.09% drug at the end of 4 h only. Thus the formulated cream containing microsponges of miconazole nitrate would be a promising alternative as compared to conventional therapy for secure and efficient treatment of acne and other topical infections.


Subject(s)
Acne Vulgaris/drug therapy , Antifungal Agents/administration & dosage , Chemistry, Pharmaceutical , Drug Delivery Systems , Drug Liberation , Miconazole/administration & dosage , Acne Vulgaris/microbiology , Antifungal Agents/pharmacology , Aspergillus niger/drug effects , Candida albicans/drug effects , Humans , Miconazole/pharmacology , Microbial Sensitivity Tests , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...