Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Fitoterapia ; 114: 26-33, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27521895

ABSTRACT

In an attempt to discover new scaffolds for anti-diabetic activity from plants, we screened extracts from Ixora brachiata Roxb. for their effect on glucose uptake in L6 myotubes. The petroleum (PE) extract of the plant showed a significant increase in insulin stimulated glucose uptake by L6 myotubes. The bioactivity guided fractionation of the crude extract yielded a compound (E)-9-oxooctadec-10-en-12-ynoic acid (OEA). The compound induced a dose dependent increase in insulin stimulated glucose uptake in L6 myotubes with an EC50 of 22.96µM. OEA also increased the phosphorylation of IRS-1, Akt and AS160 leading to increased GLUT4 translocation to the plasma membrane indicating that it promotes insulin stimulated glucose uptake in L6 myotubes by activating the PI3K pathway.


Subject(s)
Diynes/pharmacology , Fatty Acids, Unsaturated/pharmacology , Glucose/metabolism , Muscle Fibers, Skeletal/drug effects , Plant Extracts/pharmacology , Rubiaceae/chemistry , Signal Transduction , Animals , Cells, Cultured , Diynes/isolation & purification , Fatty Acids, Unsaturated/isolation & purification , GTPase-Activating Proteins/metabolism , Glucose Transporter Type 4/metabolism , Insulin/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Muscle Fibers, Skeletal/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats
2.
Eur J Pharmacol ; 769: 117-26, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26546724

ABSTRACT

NFAT-133 is an aromatic compound with cinammyl alcohol moiety, isolated from streptomycetes strain PM0324667. We have earlier reported that NFAT-133 increases insulin stimulated glucose uptake in L6 myotubes using a PPARγ independent mechanism and reduces plasma or blood glucose levels in diabetic mice. Here we investigated the effects of NFAT-133 on cellular signaling pathways leading to glucose uptake in L6 myotubes. Our studies demonstrate that NFAT-133 increases glucose uptake in a dose- and time-dependent manner independent of the effects of insulin. Treatment with Akti-1/2, wortmannin and increasing concentrations of insulin had no effect on NFAT-133 mediated glucose uptake. NFAT-133 induced glucose uptake is completely mitigated by Compound C, an AMPK inhibitor. Further, the kinases upstream of AMPK activation namely; LKB-1 and CAMKKß are not involved in NFAT-133 mediated AMPK activation nor does the compound NFAT-133 have any effect on AMPK enzyme activity. Further analysis confirmed that NFAT-133 indirectly activates AMPK by reducing the mitochondrial membrane potential and increasing the ratio of AMP:ATP.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Pentanols/pharmacology , Pentanones/pharmacology , Signal Transduction/drug effects , AMP-Activated Protein Kinases/antagonists & inhibitors , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Biological Transport/drug effects , Cell Line , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , GTPase-Activating Proteins/metabolism , Glucose Transporter Type 4/metabolism , Humans , Insulin/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mice , Muscle Fibers, Skeletal/drug effects , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Rats , Time Factors
3.
Phytomedicine ; 19(11): 988-97, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22762939

ABSTRACT

Medicinal plants have shown great promise as a source of novel drug compounds for the treatment of inflammatory disorders. In our search for new entities with anti-inflammatory potential, the extracts of the whole plant of Saussurea heteromalla (family-Asteraceae), collected from Himalayas, were evaluated in the high throughput screen for TNF-α and IL-6 inhibitors. The extract blocked TNF-α and IL-6 production in LPS stimulated THP-1 cells (human acute monocyte leukemia cell line) completely at 10 and 30 µg/ml. The plant has been found as a new source of chlorojanerin, a guaianolide type of sesquiterpene lactone. Chlorojanerin was shown to be significantly effective in inhibiting TNF-α and IL-6 production in LPS-stimulated THP-1 cells (IC(50)=2.3±0.2 µM and 1.8±0.7 µM respectively). The compound also blocked TNF-α and IL-6 production from LPS-stimulated human monocytes (IC(50)=1.5±0.4 and 0.7±0.2 µM respectively) and synovial cells from a patient with rheumatoid arthritis (IC(50)<0.03 and 0.5 µM respectively). Transcriptional profiling of the LPS stimulated THP-1 cells revealed that chlorojanerin exerted its anti-inflammatory effect by inhibiting the expression of 8 genes involved in activating the transcription factor - NF-κB. Real time analysis of these genes validated the effect of chlorojanerin on the classical downstream targets of NF-κB. Thus, this study clearly delineated 8 genes which were specifically mitigated due to the effect of chlorojanerin on NF-κB induced signaling at the mRNA level. Further, chlorojanerin at 5 µM also inhibited the binding of NF-κB in a GFP reporter assay system by 55.5% thus validating the microarray gene expression data. This work is a step towards the isolation and characterization of lead anti-inflammatory agents from the extract of Saussurea heteromalla, which can be developed into better therapeutic molecules targeted towards some specific inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cytokines/drug effects , Lactones/pharmacology , NF-kappa B/drug effects , Plant Extracts/pharmacology , Saussurea/chemistry , Sesquiterpenes/pharmacology , Adult , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Arthritis, Rheumatoid/metabolism , Cell Line , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Lactones/chemistry , Lactones/isolation & purification , Middle Aged , Monocytes/drug effects , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plants, Medicinal , RNA/genetics , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Signal Transduction/drug effects , Time Factors , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism , Young Adult
4.
Biochem Biophys Res Commun ; 418(2): 384-9, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22281490

ABSTRACT

Macrophage migration inhibitory factor (MIF) is known to contribute to the pathogenesis of inflammatory hyperalgesia and neuropathic pain. Prior studies have shown that Vitamin E treatment is associated with attenuated hyperalgesia and reduced neuropathic pain in rodents. Given these observations, we investigated the possibility that Vitamin E is a MIF inhibitor. Dopachrome tautomerase assays revealed that Vitamin E inhibits the enzymatic activity of purified human recombinant MIF (rhMIF) in a dose-dependent manner (45%, 74%, 92% and 100% inhibition at 3, 10, 30 and 100µM, respectively). Cell-free ELISA based assays showed that Vitamin E binds onto rhMIF thereby blocking its recognition (48% inhibition at 100µM). Circular dichroism studies indicated the Vitamin E has a strong affinity to bind to rhMIF (binding constant 19.52±1.4µM). In silico studies demonstrated that Vitamin E docks well in the active site of MIF with the long aliphatic chain of Vitamin E exhibiting strong van der Waals interactions with MIF. Most importantly, human cell-based assays revealed that Vitamin E significantly inhibits rhMIF-induced production of pro-inflammatory cytokines in a dose-dependent manner (77%, 80%, and 96% inhibition of IL-6 production, respectively, at 10, 30 and 100µM). Taken together, these results demonstrate that Vitamin E inhibits not only the enzymatic activity of MIF but more importantly the biological function of MIF. Our findings suggest that Vitamin E may be attenuating hyperalgesia and reducing neuropathic pain at least in part by inhibiting MIF activity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Enzyme Inhibitors/pharmacology , Intramolecular Oxidoreductases/antagonists & inhibitors , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Vitamin E/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Binding Sites , Cells, Cultured , Humans , Intramolecular Oxidoreductases/chemistry , Macrophage Migration-Inhibitory Factors/chemistry , Protein Conformation , Vitamin E/chemistry
5.
AMB Express ; 1(1): 42, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22104600

ABSTRACT

Type-2 diabetes is mediated by defects in either insulin secretion or insulin action. In an effort to identify extracts that may stimulate glucose uptake, similar to insulin, a high throughput-screening assay for measuring glucose uptake in skeletal muscle cells was established. During the screening studies to discover novel antidiabetic compounds from microbial resources a Streptomyces strain PM0324667 (MTCC 5543, the Strain accession number at Institute of Microbial Technology, Chandigarh, India), an isolate from arid soil was identified which expressed a secondary metabolite that induced glucose uptake in L6 skeletal muscle cells. By employing bioactivity guided fractionation techniques, a tri-substituted simple aromatic compound with anti-diabetic potential was isolated. It was characterized based on MS and 2D NMR spectral data and identified as NFAT-133 which is a known immunosuppressive agent that inhibits NFAT-dependent transcription in vitro. Our investigations revealed the antidiabetic potential of NFAT-133. The compound induced glucose uptake in differentiated L6 myotubes with an EC50 of 6.3 ± 1.8 µM without activating the peroxisome proliferator-activated receptor-γ. Further, NFAT-133 was also efficacious in vivo in diabetic animals and reduced systemic glucose levels. Thus it is a potential lead compound which can be considered for development as a therapeutic for the treatment of type-2 diabetes. We have reported herewith the isolation of the producer microbe, fermentation, purification, in vitro, and in vivo antidiabetic activity of the compound.

6.
Am J Physiol Cell Physiol ; 298(4): C929-41, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20089935

ABSTRACT

A promising therapeutic approach to diminish pathological inflammation is to inhibit the increased production and/or biological activity of proinflammatory cytokines (e.g., TNF-alpha, IL-6). The production of proinflammatory cytokines is controlled at the gene level by the activity of transcription factors, such as NF-kappaB. Phosphatidylinositol 3-kinase (PI3K), a lipid kinase, is known to induce the activation of NF-kappaB. Given this, we hypothesized that inhibitors of PI3K activation would demonstrate anti-inflammatory potential. Accordingly, we studied the effects of a preferential p110alpha/gamma PI3K inhibitor (compound 8C; PIK-75) in inflammation-based assays. Mechanism-based assays utilizing human cells revealed that PIK-75-mediated inhibition of PI3K activation is associated with dramatic suppression of downstream signaling events, including AKT phosphorylation, IKK activation, and NF-kappaB transcription. Cell-based assays revealed that PIK-75 potently and dose dependently inhibits in vitro and in vivo production of TNF-alpha and IL-6, diminishes the induced expression of human endothelial cell adhesion molecules (E-selectin, ICAM-1, and VCAM-1), and blocks human monocyte-endothelial cell adhesion. Most importantly, PIK-75, when administered orally in a therapeutic regimen, significantly suppresses the macroscopic and histological abnormalities associated with dextran sulfate sodium-induced murine colitis. The efficacy of PIK-75 in attenuating experimental inflammation is mediated, at least in part, due to the downregulation of pertinent inflammatory mediators in the colon. Collectively, these results provide first evidence that PIK-75 possesses anti-inflammatory potential. Given that PIK-75 is known to exhibit anti-cancer activity, the findings from this study thus reinforce the cross-therapeutic functionality of potential drugs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Enzyme Inhibitors/pharmacology , Hydrazones/pharmacology , Inflammation Mediators/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Subunits/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cell Adhesion , Cell Line , Colitis/drug therapy , Colitis/immunology , E-Selectin/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Enzyme Activation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Humans , Hydrazones/metabolism , Hydrazones/toxicity , I-kappa B Kinase/metabolism , Inflammation/drug therapy , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/antagonists & inhibitors , Mice , Mice, Inbred BALB C , Molecular Structure , Monocytes/cytology , Monocytes/metabolism , NF-kappa B/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Subunits/metabolism , Signal Transduction , Sulfonamides/metabolism , Sulfonamides/toxicity , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...