Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 7(4): e0025222, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35876530

ABSTRACT

Decorin binding protein A (DbpA) is a surface adhesin of Borrelia burgdorferi, the causative agent of Lyme disease. While DbpA is one of the most immunogenic of B. burgdorferi's nearly 100 lipoproteins, the B cell epitopes on DbpA recognized by humans following B. burgdorferi infection have not been fully elucidated. In this report we profiled ~270 B. burgdorferi-seropositive human serum samples for IgM and IgG reactivity with a tiled DbpA 18-mer peptide array derived from B. burgdorferi sensu stricto strains B31 and 297. Using enzyme-linked immunosorbent assays (ELISA) and multiplex immunoassays (MIA), we identified 12 DbpA-derived peptides whose antibody reactivities were significantly elevated (generally <10-fold) in B. burgdorferi-seropositive sera, compared to those measured in a healthy cohort. The most reactive peptide (>80-fold IgG, 10-fold IgM) corresponded to residues 64 to 81, which map to an exposed flexible loop between DbpA's α-helix 1 and α-helix 2. This loop, whose sequence is identical between strains B31 and 297, overhangs DbpA's substrate binding pocket. A second strongly reactive antibody target (>80-fold IgG, 3 to 5-fold IgM) mapped to DbpA's C-terminus, a lysine rich tail implicated in attachment to glycosaminoglycans. We postulate that antibody responses against these two targets on DbpA could limit B.burgdorferi's ability to attach to and colonize distal tissues during the early stages of infection. IMPORTANCE The bacterium, Borrelia burgdorferi, is the causative agent of Lyme disease, the most reported tick-borne illness in the United States. In humans, clinical manifestations of Lyme disease are complex and can persist for months, even in the face of a robust antibody response directed against numerous B. burgdorferi surface proteins, including decorin binding protein A (DbpA), which is involved in the early stages of infection. In this study we employed ~270 serum samples from B. burgdorferi-seropositive individuals to better understand human antibody reactivity to specific regions (called epitopes) of DbpA and how such antibodies may function in limiting B. burgdorferi dissemination and tissue colonization.


Subject(s)
Bacterial Proteins/metabolism , Borrelia burgdorferi , Lyme Disease , Decorin/metabolism , Epitopes, B-Lymphocyte , Humans , Immunoglobulin G , Immunoglobulin M
2.
Biomaterials ; 31(33): 8626-33, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20728934

ABSTRACT

Biologic materials from various species and tissues are commonly used as surgical meshes or scaffolds for tissue reconstruction. Extracellular matrix (ECM) represents the secreted product of the cells comprising each tissue and organ, and therefore provides a unique biologic material for selected regenerative medicine applications. Minimal disruption of ECM ultrastructure and content during tissue processing is typically desirable. The objective of this study was to systematically evaluate effects of commonly used tissue processing steps upon porcine dermal ECM scaffold composition, mechanical properties, and cytocompatibility. Processing steps evaluated included liming and hot water sanitation, trypsin/SDS/TritonX-100 decellularization, and trypsin/TritonX-100 decellularization. Liming decreased the growth factor and glycosaminoglycan content, the mechanical strength, and the ability of the ECM to support in vitro cell growth (p ≤ 0.05 for all). Hot water sanitation treatment decreased only the growth factor content of the ECM (p ≤ 0.05). Trypsin/SDS/TritonX-100 decellularization decreased the growth factor content and the ability of the ECM to support in vitro cell growth (p ≤ 0.05 for both). Trypsin/Triton X-100 decellularization also decreased the growth factor content of the ECM but increased the ability of the ECM to support in vitro cell growth (p ≤ 0.05 for both). We conclude that processing steps evaluated in the present study affect content, mechanical strength, and/or cytocompatibility of the resultant porcine dermal ECM, and therefore care must be taken in choosing appropriate processing steps to maintain the beneficial effects of ECM in biologic scaffolds.


Subject(s)
Dermis/metabolism , Extracellular Matrix/metabolism , Mechanical Phenomena , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Proliferation , Dermis/cytology , Fibroblast Growth Factor 2/metabolism , Glycosaminoglycans/metabolism , Materials Testing , Sus scrofa , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...