Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med Technol ; 6: 1320762, 2024.
Article in English | MEDLINE | ID: mdl-38456122

ABSTRACT

Introduction: Stereoelectroencephalography (sEEG) is a minimally invasive procedure that uses depth electrodes stereotactically implanted into brain structures to map the origin and propagation of seizures in epileptic patients. Implantation accuracy of sEEG electrodes plays a critical role in the safety and efficacy of the procedure. This study used human cadaver heads, simulating clinical practice, to evaluate (1) neurosurgeon's ability to implant a new thin-film polyimide sEEG electrode according to the instructions for use (IFU), and (2) implantation accuracy. Methods: Four neurosurgeons (users) implanted 24 sEEG electrodes into two cadaver heads with the aid of the ROSA robotic system. Usability was evaluated using a questionnaire that assessed completion of all procedure steps per IFU and user errors. For implantation accuracy evaluation, planned electrode trajectories were compared with post-implantation trajectories after fusion of pre- and postoperative computer tomography (CT) images. Implantation accuracy was quantified using the Euclidean distance for entry point error (EPE) and target point error (TPE). Results: All sEEG electrodes were successfully placed following the IFU without user errors, and post-implant survey of users showed favorable handling characteristics. The EPE was 1.28 ± 0.86 mm and TPE was 1.61 ± 0.89 mm. Long trajectories (>50 mm) had significantly larger EPEs and TPEs than short trajectories (<50 mm), and no differences were found between orthogonal and oblique trajectories. Accuracies were similar or superior to those reported in the literature when using similar experimental conditions, and in the same range as those reported in patients. Discussion: The results demonstrate that newly developed polyimide sEEG electrodes can be implanted as accurately as similar devices in the marker without user errors when following the IFU in a simulated clinical environment. The human cadaver ex-vivo test system provided a realistic test system, owing to the size, anatomy and similarity of tissue composition to that of the live human brain.

2.
Micromachines (Basel) ; 13(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36296151

ABSTRACT

Subdural electrode arrays are used for monitoring cortical activity and functional brain mapping in patients with seizures. Until recently, the only commercially available arrays were silicone-based, whose thickness and lack of conformability could impact their performance. We designed, characterized, manufactured, and obtained FDA clearance for 29-day clinical use (510(k) K192764) of a new thin-film polyimide-based electrode array. This study describes the electrochemical characterization undertaken to evaluate the quality and reliability of electrical signal recordings and stimulation of these new arrays. Two testing paradigms were performed: a short-term active soak with electrical stimulation and a 29-day passive soak. Before and after each testing paradigm, the arrays were evaluated for their electrical performance using Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV) and Voltage Transients (VT). In all tests, the impedance remained within an acceptable range across all frequencies. The different CV curves showed no significant changes in shape or area, which is indicative of stable electrode material. The electrode polarization remained within appropriate limits to avoid hydrolysis.

3.
Int Neurourol J ; 26(2): 111-118, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35793989

ABSTRACT

PURPOSE: Lower urinary tract symptoms are known to significantly increase with age, negatively impacting quality of life and self-reliance. The urothelium fulfills crucial tasks, serving as a barrier protecting the underlying bladder tissue from the harsh chemical composition of urine, and exhibits signaling properties via the release of mediators within the bladder wall that affect bladder functioning. Aging is associated with detrimental changes in cellular health, in part by increasing oxidative stress in the bladder mucosa, and more specifically the urothelium. This, in turn, may impact urothelial mitochondrial health and bioenergetics. METHODS: We collected mucosal tissue samples from both young (3-4 months old) and aged (25-30 months old) rats. Tissue was evaluated for p21-Arc, nitrotyrosine, and cytochrome C expression by western immunoblotting. Urothelial cells were cultured for single-cell imaging to analyze basal levels of reactive oxygen species and the mitochondrial membrane potential. Mitochondrial bioenergetics and cellular respiration were investigated by the Seahorse assay, and measurements of adenosine triphosphate release were made using the luciferin-luciferase assay. RESULTS: Aging was associated with a significant increase in biomarkers of cellular senescence, oxidative stress, and basal levels of reactive oxygen species. The mitochondrial membrane potential was significantly lower in urothelial cell cultures from aged animals, and cultures from aged animals showed a significant decrease in mitochondrial bioenergetics. CONCLUSION: Aging-related increases in oxidative stress and excessive reactive oxygen species may be contributing factors underlying lower urinary tract symptoms in older adults. The mechanisms outlined in this study could be utilized to identify novel pharmaceutical targets to improve aging-associated bladder dysfunction.

4.
Front Neurosci ; 16: 876877, 2022.
Article in English | MEDLINE | ID: mdl-35573282

ABSTRACT

Subdural strip and grid invasive electroencephalography electrodes are routinely used for surgical evaluation of patients with drug-resistant epilepsy (DRE). Although these electrodes have been in the United States market for decades (first FDA clearance 1985), their fabrication, materials, and properties have hardly changed. Existing commercially available electrodes are made of silicone, are thick (>0.5 mm), and do not optimally conform to brain convolutions. New thin-film polyimide electrodes (0.08 mm) have been manufactured to address these issues. While different thin-film electrodes are available for research use, to date, only one electrode is cleared by Food and Drug Administration (FDA) for use in clinical practice. This study describes the biocompatibility tests that led to this clearance. Biocompatibility was tested using standard methods according to International Organization for Standardization (ISO) 10993. Electrodes and appropriate control materials were bent, folded, and placed in the appropriate extraction vehicles, or implanted. The extracts were used for in vitro and in vivo tests, to assess the effects of any potential extractable and leachable materials that may be toxic to the body. In vitro studies included cytotoxicity tested in L929 cell line, genotoxicity tested using mouse lymphoma assay (MLA) and Ames assay, and hemolysis tested in rabbit whole blood samples. The results indicated that the electrodes were non-cytotoxic, non-mutagenic, non-clastogenic, and non-hemolytic. In vivo studies included sensitization tested in guinea pigs, irritation tested in rabbits, acute systemic toxicity testing in mice, pyrogenicity tested in rabbits, and a prolonged 28-day subdural implant in sheep. The results indicated that the electrodes induced no sensitization and irritation, no weight loss, and no temperature increase. Histological examination of the sheep brain tissue showed no or minimal immune cell accumulation, necrosis, neovascularization, fibrosis, and astrocyte infiltration, with no differences from the control material. In summary, biocompatibility studies indicated that these new thin-film electrodes are appropriate for human use. As a result, the electrodes were cleared by the FDA for use in clinical practice [510(k) K192764], making it the first thin-film subdural electrode to progress from research to clinic. Its readiness as a commercial product ensures availability to all patients undergoing surgical evaluation for DRE.

5.
Int Neurourol J ; 26(4): 299-307, 2022 12.
Article in English | MEDLINE | ID: mdl-36599338

ABSTRACT

PURPOSE: Substantive evidence supports a role of chronic stress in the development, maintenance, and even enhancement of functional bladder disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increased urinary frequency and bladder hyperalgesia have been reported in rodents exposed to a chronic stress paradigm. Here, we utilized a water avoidance stress (WAS) model in rodents to investigate the effect of chronic stress on vascular perfusion and angiogenesis. METHODS: Female Wistar-Kyoto rats were exposed to WAS for 10 consecutive days. Bladder neck tissues were analyzed by western immunoblot for vascular endothelial growth factor (VEGF) and nerve growth factor precursor (proNGF). Vascular perfusion was assessed by fluorescent microangiography followed by Hypoxyprobe testing to identify regions of tissue hypoxia. RESULTS: The expression of VEGF and proNGF in the bladder neck mucosa was significantly higher in the WAS rats than in the controls. There was a trend toward increased vascular perfusion, but without a statistically significant difference from the control group. The WAS rats displayed a 1.6-fold increase in perfusion. Additionally, a greater abundance of vessels was observed in the WAS rats, most notably in the microvasculature. CONCLUSION: These findings show that chronic psychological stress induces factors that can lead to increased microvasculature formation, especially around the bladder neck, the region that contains most nociceptive bladder afferents. These findings may indicate a link between angiogenesis and other inflammatory factors that contribute to structural changes and pain in IC/BPS.

6.
PLoS One ; 16(11): e0260351, 2021.
Article in English | MEDLINE | ID: mdl-34807938

ABSTRACT

Eye movements measured by high precision eye-tracking technology represent a sensitive, objective, and non-invasive method to probe functional neural pathways. Oculomotor tests (e.g., saccades and smooth pursuit), tests that involve cognitive processing (e.g., antisaccade and predictive saccade), and reaction time tests have increasingly been showing utility in the diagnosis and monitoring of mild traumatic brain injury (mTBI) in research settings. Currently, the adoption of these tests into clinical practice is hampered by a lack of a normative data set. The goal of this study was to construct a normative database to be used as a reference for comparing patients' results. Oculomotor, cognitive, and reaction time tests were administered to male and female volunteers, aged 18-45, who were free of any neurological, vestibular disorders, or other head injuries. Tests were delivered using either a rotatory chair equipped with video-oculography goggles (VOG) or a portable virtual reality-like VOG goggle device with incorporated infrared eye-tracking technology. Statistical analysis revealed no effects of age on test metrics when participant data were divided into pediatric (i.e.,18-21 years, following FDA criteria) and adult (i.e., 21-45 years) groups. Gender (self-reported) had an effect on auditory reaction time, with males being faster than females. Pooled data were used to construct a normative database using 95% reference intervals (RI) with 90% confidence intervals on the upper and lower limits of the RI. The availability of these RIs readily allows clinicians to identify specific metrics that are deficient, therefore aiding in rapid triage, informing and monitoring treatment and/or rehabilitation protocols, and aiding in the return to duty/activity decision. This database is FDA cleared for use in clinical practice (K192186).


Subject(s)
Eye Movements , Eye-Tracking Technology/instrumentation , Adolescent , Adult , Cognition , Female , Humans , Male , Middle Aged , Reaction Time , Young Adult
7.
Laryngoscope Investig Otolaryngol ; 6(5): 1116-1127, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34667856

ABSTRACT

OBJECTIVE: Eye tracking technology has been employed in assessing ocular motor and vestibular function following vestibular and neurologic conditions, including traumatic brain injury (TBI). Assessments include tests that provide visual and motion (rotation) stimuli while recording horizontal, vertical, and torsional eye movements. While some of these tests have shown diagnostic promise in previous studies, their use in clinical practice is limited by the lack of normative data. The goal of this study was to construct normative reference ranges to be used when comparing patients' results. METHODS: Optokinetic response, subjective visual horizontal and vertical, and rotation tests were administered to male and female volunteers, ages 18-45, who were free from neurological, vestibular disorders, or other head injuries. Tests were administered using either a rotatory chair or a portable virtual reality-like goggle equipped with video-oculography. RESULTS: Reference values for eye movements in response to different patterns of stimuli were analyzed from 290 to 449 participants. Analysis of gender (self-reported) or age when grouped as pediatric (late adolescent; 18-21 years of age) and adult (21-45 years of age) revealed no effects on the test metrics. Data were pooled and presented for each test metric as the 95% reference interval (RI) with 90% confidence intervals (CI) on upper and lower limits of the RI. CONCLUSIONS: This normative database can serve as a tool to aid in diagnosis, treatment, and/or rehabilitation protocols for vestibular and neurological conditions, including mild TBI (mTBI). This database has been cleared by the FDA for use in clinical practice (K192186). LEVEL OF EVIDENCE: 2b.

8.
Neurourol Urodyn ; 38(6): 1551-1559, 2019 08.
Article in English | MEDLINE | ID: mdl-31102563

ABSTRACT

AIM: To characterize the effects of acute spinal cord injury (SCI) on mitochondrial morphology and function in bladder urothelium and to test the therapeutic efficacy of early treatment with the mitochondrially targeted antioxidant, MitoTempo. METHODS: We used a mouse model of acute SCI by spinal cord transection between the T8-T9 vertebrae with or without MitoTempo delivery at the time of injury followed by tissue processing at 3 days after SCI. Control, SCI, and SCI-MitoTempo-treated mice were compared in all experimental conditions. Assessments included analysis of markers of mitochondrial health including accumulation of reactive oxygen species (ROS), morphological changes in the ultrastructure of mitochondria by transmission electron microscopy, and Western blot analysis to quantify protein levels of markers for autophagy and altered mitochondrial dynamics. RESULTS: SCI resulted in an increase in oxidative stress markers and ROS production, confirming mitochondrial dysfunction. Mitochondria from SCI mice developed large electron-dense inclusions and these aberrant mitochondria accumulated throughout the cytoplasm suggesting an inability to clear dysfunctional mitochondria by mitophagy. SCI mice also exhibited elevated levels of dynamin-related protein 1 (DRP1), consistent with a disruption of mitochondrial dynamics. Remarkably, treatment with MitoTempo reversed many of the SCI-induced abnormalities that we observed. CONCLUSIONS: Acute SCI negatively and severely affects mitochondrial health of bladder urothelium. Early treatment of SCI with MitoTempo may be a viable therapeutic agent to mitigate these deleterious effects.


Subject(s)
Mitochondrial Diseases/etiology , Mitochondrial Diseases/metabolism , Spinal Cord Injuries/metabolism , Urothelium/metabolism , Acute Disease , Animals , Antioxidants/pharmacology , Apoptosis , Autophagy , Dynamins/biosynthesis , Dynamins/genetics , Female , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/ultrastructure , Organophosphorus Compounds/pharmacology , Oxidative Stress/drug effects , Piperidines/pharmacology , Reactive Oxygen Species/metabolism
9.
Asian J Urol ; 5(3): 135-140, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29988876

ABSTRACT

Alterations in bladder function with aging are very common and are very likely to represent an increasing healthcare problem in the years to come with the general aging of the population. In this review the authors describe the prevalence of lower urinary tract symptoms (LUTS) and comment upon potential mechanisms which may be responsible for the increasing prevalence of lower LUTS with increasing age, based on laboratory studies. It is clear that there is a complex interplay between the various components of the neural innervation structure of the bladder in leading to changes with age, which are likely to underpin the LUTS which are seen in the aging bladder.

SELECTION OF CITATIONS
SEARCH DETAIL
...