Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
NPJ Biofilms Microbiomes ; 9(1): 9, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854956

ABSTRACT

To date, the mechanisms of biomineralization induced by bacterial cells in the context of biofilm formation remain the subject of intensive studies. In this study, we analyzed the influence of the medium components on the induction of CaCO3 precipitation by the Bacillus cereus cells and composition of the extracellular matrix (ECM) formed in the submerged culture. While the accumulation of extracellular polysaccharides and amyloids appeared to be independent of the presence of calcium and urea during the growth, the accumulation of extracellular DNA (eDNA), as well as precipitation of calcium carbonate, required the presence of both ingredients in the medium. Removal of eDNA, which was sensitive to treatment by DNase, did not affect other matrix components but resulted in disruption of cell network formation and a sixfold decrease in the precipitate yield. An experiment with a cell-free system confirmed the acceleration of mineral formation after the addition of exogenous salmon sperm DNA. The observed pathway for the formation of CaCO3 minerals in B. cereus planktonic culture included a production of exopolysaccharides and negatively charged eDNA lattice promoting local Ca2+ supersaturation, which, together with an increase in the concentration of carbonate ions due to pH rise, resulted in the formation of an insoluble precipitate of calcium carbonate. Precipitation of amorphous CaCO3 on eDNA matrix was followed by crystal formation via the ACC-vaterite-calcite/aragonite pathway and further formation of larger mineral aggregates in complex with extracellular polymeric substances. Taken together, our data showed that DNA in extracellular matrix is an essential factor for triggering the biomineralization in B. cereus planktonic culture.


Subject(s)
Bacillus cereus , Semen , Male , Humans , Bacillus cereus/genetics , Biofilms , Calcium Carbonate , DNA
2.
Foods ; 12(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613265

ABSTRACT

Kombucha tea was made by the fermentation of SCOBY culture of green tea broth with the addition of Fucus vesiculosus algae extract, Cetraria islandica lichen extract and their mixture. Kombucha was also made without the herbal supplements as a control. After 11 days of fermentation, in addition to the yeast Brettanomyces bruxellensis and the bacteria Komagataeibacter rhaeticus and Komagataeibacter hansenii contained in all of the samples, the yeast Zygosaccharomyces bailii and bacteria Komagataeibacter cocois were detected in the samples with the herbal extracts. In all of the kombucha with herbal additives, the total fraction of yeast was decreased as compared to the control. The total content of polyphenols and the antioxidant activity of the beverages with and without the addition of herbal extracts were comparable. The kombucha made with the algae extract showed an increased content of sucrose and organic acids, while the fructose and glucose content in the samples with algae and the mixture of extracts were lower than in the other samples. The samples with the algae extract had the highest organoleptic indicators "aroma", "clarity" and "acidity", while the control samples had slightly higher indicators of "taste" and "aftertaste". The results of this study indicate the potential of algae and lichens as functional supplements for obtaining non-alcoholic fermented beverages with additional nutraceutical value.

3.
Biology (Basel) ; 10(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477817

ABSTRACT

Fucoidans, sulfated polysaccharides found in cell walls of brown algae, are considered as a promising antimicrobial component for various applications in medicine and the food industry. In this study, we compare the antibacterial properties of two fractions of fucoidan from the brown algae Fucus vesiculosus gathered in the littoral of the Barents Sea and sampled at different stages of purification. The crude fraction of fucoidan was isolated from algae by extraction with aqueous ethanol and sonication. The purified fraction was obtained by additional treatment of the crude fraction with a solution of calcium chloride. The structural features of both fractions were characterized in detail and their antibacterial effects against several Gram-positive and Gram-negative bacteria were compared by photometry, acridine orange staining assay, and atomic force microscopy. Fucoidan inhibited growth in all of the above microorganisms, showing a bacteriostatic effect with minimum inhibitory concentrations (MIC) in the range between 4 and 6 mg/mL, with E. coli being the most sensitive to both fractions. Changes in the chemical composition after treatment of the crude fraction with a solution of calcium chloride led to a decrease in the content of sulfates and uronic acids and diminished antibacterial activity.

4.
Life (Basel) ; 10(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260571

ABSTRACT

Microbially induced CaCO3 precipitation (MICP) is considered as an alternative green technology for cement self-healing and a basis for the development of new biomaterials. However, some issues about the role of bacteria in the induction of biogenic CaCO3 crystal nucleation, growth and aggregation are still debatable. Our aims were to screen for ureolytic calcifying microorganisms and analyze their MICP abilities during their growth in urea-supplemented and urea-deficient media. Nine candidates showed a high level of urease specific activity, and a sharp increase in the urea-containing medium pH resulted in efficient CaCO3 biomineralization. In the urea-deficient medium, all ureolytic bacteria also induced CaCO3 precipitation although at lower pH values. Five strains (B. licheniformis DSMZ 8782, B. cereus 4b, S. epidermidis 4a, M. luteus BS52, M. luteus 6) were found to completely repair micro-cracks in the cement samples. Detailed studies of the most promising strain B. licheniformis DSMZ 8782 revealed a slower rate of the polymorph transformation in the urea-deficient medium than in urea-containing one. We suppose that a ureolytic microorganism retains its ability to induce CaCO3 biomineralization regardless the origin of carbonate ions in a cell environment by switching between mechanisms of urea-degradation and metabolism of calcium organic salts.

5.
Carbohydr Res ; 498: 108191, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33157460

ABSTRACT

Chitin and chitosan can undergo nonspecific enzymatic hydrolysis by several different hydrolases. This susceptibility to nonspecific enzymes opens up many opportunities for producing chitooligosaccharides and low molecular weight chitopolysaccharides, since specific chitinases and chitosanases are rare and not commercially available. In this study, chitosan and chitin were hydrolyzed using several commercially available hydrolases. Among them, cellulases with the highest specific activity demonstrated the best activity, as indicated by the rapid decrease in viscosity of a chitosan solution. The hydrolysis of chitosan by nonspecific enzymes generated a sugar release that corresponded to the decrease in the degree of polymerization. This decrease reached a maximum of 3.3-fold upon hydrolysis of 10% of the sample. Cellulases were better than lysozyme or amylases at hydrolyzing chitosan and chitin. Analysis of 13C CP-MAS NMR and FTIR spectra of chitin after cellulase treatment revealed changes in the chitin crystal structure related to rearrangement of inter- and intramolecular H-bonds. The structural changes and decreases in crystallinity allowed dissolution of chitin molecules of high molecular weight and enhanced the solubility of chitin in alkali by 10-12% compared to untreated chitin.


Subject(s)
Chitin/chemistry , Chitosan/chemistry , Hydrogen Bonding , Hydrolases/metabolism , Hydrolysis , Viscosity
6.
J Basic Microbiol ; 60(11-12): 971-982, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33103248

ABSTRACT

Endo-ß-xylanases are hemicellulases involved in the conversion of xylans in plant biomass. Here, we report a novel acidophilic ß-xylanase (ScXynA) with high transglycosylation abilities that was isolated from the filamentous fungus Scytalidium candidum 3C. ScXynA was identified as a glycoside hydrolase family 10 (GH10) dimeric protein, with a molecular weight of 38 ± 5 kDa per subunit. The enzyme catalyzed the hydrolysis of different xylans under acidic conditions and was stable in the pH range 2.6-4.5. The kinetic parameters of ScXynA were determined in hydrolysis reactions with p-nitrophenyl-ß-d-cellobioside (pNP-ß-Cel) and p-nitrophenyl-ß-d-xylobioside (pNP-ß-Xyl2 ), and kcat /Km was found to be 0.43 ± 0.02 (s·mM)-1 and 57 ± 3 (s·mM)-1 , respectively. In the catalysis of the transglycosylation o-nitrophenyl-ß-d-xylobioside (oNP-ß-Xyl2 ) acted both as a donor and an acceptor, resulting in the efficient production of o-nitrophenyl xylooligosaccharides, with a degree of polymerization of 3-10 and o-nitrophenyl-ß-d-xylotetraose (oNP-ß-Xyl4 ) as the major product (18.5% yield). The modeled ScXynA structure showed a favorable position for ligand entry and o-nitrophenyl group accommodation in the relatively open -3 subsite, while the cleavage site was covered with an extended loop. These structural features provide favorable conditions for transglycosylation with oNP-ß-Xyl2 . The acidophilic properties and high transglycosylation activity make ScXynA a suitable choice for various biotechnological applications, including the synthesis of valuable xylooligosaccharides.


Subject(s)
Ascomycota/enzymology , Endo-1,4-beta Xylanases/metabolism , Glucuronates/metabolism , Oligosaccharides/metabolism , Catalysis , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/isolation & purification , Glycosylation , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Models, Molecular , Molecular Weight , Protein Multimerization , Substrate Specificity , Temperature , Xylans/metabolism
7.
Materials (Basel) ; 13(9)2020 May 01.
Article in English | MEDLINE | ID: mdl-32369952

ABSTRACT

The crystal and supramolecular structure of the bacterial cellulose (BC) has been studied at different stages of cellobiohydrolase hydrolysis using various physical and microscopic methods. Enzymatic hydrolysis significantly affected the crystal and supramolecular structure of native BC, in which the 3D polymer network consisted of nanoribbons with a thickness T ≈ 8 nm and a width W ≈ 50 nm, and with a developed specific surface SBET ≈ 260 m2·g-1. Biodegradation for 24 h led to a ten percent decrease in the mean crystal size Dhkl of BC, to two-fold increase in the sizes of nanoribbons, and in the specific surface area SBET up to ≈ 100 m2·g-1. Atomic force and scanning electron microscopy images showed BC microstructure "loosening"after enzymatic treatment, as well as the formation and accumulation of submicron particles in the cells of the 3D polymer network. Experiments in vitro and in vivo did not reveal cytotoxic effect by the enzyme addition to BC dressings and showed a generally positive influence on the treatment of extensive III-degree burns, significantly accelerating wound healing in rats. Thus, in our opinion, the results obtained can serve as a basis for further development of effective biodegradable dressings for wound healing.

9.
J Basic Microbiol ; 58(10): 883-891, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30067294

ABSTRACT

In the 1970s, the strain Geotrichum candidum Link 3C was isolated from rotting rope and since then has been extensively studied as a source of cellulose and xylan-degrading enzymes. The original identification of the strain was based only on morphological characters of the fungal mycelium in culture. Recent comparison of the internal transcribed spacer (ITS) fragments derived from the draft genome published in 2015 did not show its similarity to G. candidum species. Given the value of the strain 3C in lignocellulosic biomass degradation, we performed morphological and molecular studies to find the appropriate taxonomic placement for this fungal strain within the Ascomycota phylum. ITS, 18S rDNA, 28S rDNA sequences, and RPB2 encoding genes were used to construct phylogenetic trees with Maximum likelihood and Bayesian inference methods. Based on sequence comparison and multiple gene sequencing, we conclude that the fungal strain designated as Geotrichum candidum Link 3C should be placed into the genus Scytalidium (Pezizomycotina, Leotiomycetes) and is redescribed herein as Scytalidium candidum 3C comb. nov.


Subject(s)
Ascomycota/classification , Ascomycota/physiology , Phylogeny , Ascomycota/genetics , Ascomycota/growth & development , Classification , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Genome, Bacterial/genetics , Hydrogen-Ion Concentration , Mycelium , RNA Polymerase II/genetics , Sequence Analysis, DNA , Spores, Fungal , Temperature
10.
Biotechnol Biofuels ; 11: 5, 2018.
Article in English | MEDLINE | ID: mdl-29344086

ABSTRACT

BACKGROUND: The ascomycete fungus Trichoderma reesei is the predominant source of enzymes for industrial conversion of lignocellulose. Its glycoside hydrolase family 7 cellobiohydrolase (GH7 CBH) TreCel7A constitutes nearly half of the enzyme cocktail by weight and is the major workhorse in the cellulose hydrolysis process. The orthologs from Trichoderma atroviride (TatCel7A) and Trichoderma harzianum (ThaCel7A) show high sequence identity with TreCel7A, ~ 80%, and represent naturally evolved combinations of cellulose-binding tunnel-enclosing loop motifs, which have been suggested to influence intrinsic cellobiohydrolase properties, such as endo-initiation, processivity, and off-rate. RESULTS: The TatCel7A, ThaCel7A, and TreCel7A enzymes were characterized for comparison of function. The catalytic domain of TatCel7A was crystallized, and two structures were determined: without ligand and with thio-cellotriose in the active site. Initial hydrolysis of bacterial cellulose was faster with TatCel7A than either ThaCel7A or TreCel7A. In synergistic saccharification of pretreated corn stover, both TatCel7A and ThaCel7A were more efficient than TreCel7A, although TatCel7A was more sensitive to thermal inactivation. Structural analyses and molecular dynamics (MD) simulations were performed to elucidate important structure/function correlations. Moreover, reverse conservation analysis (RCA) of sequence diversity revealed divergent regions of interest located outside the cellulose-binding tunnel of Trichoderma spp. GH7 CBHs. CONCLUSIONS: We hypothesize that the combination of loop motifs is the main determinant for the observed differences in Cel7A activity on cellulosic substrates. Fine-tuning of the loop flexibility appears to be an important evolutionary target in Trichoderma spp., a conclusion supported by the RCA data. Our results indicate that, for industrial use, it would be beneficial to combine loop motifs from TatCel7A with the thermostability features of TreCel7A. Furthermore, one region implicated in thermal unfolding is suggested as a primary target for protein engineering.

12.
Protein Eng Des Sel ; 30(7): 477-488, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28651356

ABSTRACT

Sulfatases are a family of enzymes (sulfuric ester hydrolases, EC 3.1.6.-) that catalyze the hydrolysis of a wide array of sulfate esters. To date, despite the discovery of many sulfatase genes and the accumulation of data on numerous sulfated molecules, the number of characterized enzymes that are key players in sulfur metabolism remains extremely limited. While mammalian sulfatases are well studied due to their involvement in a wide range of normal and pathological biological processes, lower eukaryotic sulfatases, especially fungal sulfatases, have not been thoroughly investigated at the biochemical and structural level. In this paper, we describe the molecular cloning of Fusarium proliferatum sulfatase (F.p.Sulf-6His), its recombinant expression in Pichia pastoris as a soluble and active cytosolic enzyme and its detailed characterization. Gel filtration and native electrophoretic experiments showed that this recombinant enzyme exists as a tetramer in solution. The enzyme is thermo-sensitive, with an optimal temperature of 25°C. The optimal pH value for the hydrolysis of sulfate esters and stability of the enzyme was 6.0. Despite the absence of the post-translational modification of cysteine into Cα-formylglycine, the recombinant F.p.Sulf-6His has remarkably stable catalytic activity against p-nitrophenol sulfate, with kcat = 0.28 s-1 and Km = 2.45 mM, which indicates potential use in the desulfating processes. The currently proposed enzymatic mechanisms of sulfate ester hydrolysis do not explain the appearance of catalytic activity for the unmodified enzyme. According to the available models, the unmodified enzyme is not able to perform multiple catalytic acts; therefore, the enzymatic mechanism of sulfate esters hydrolysis remains to be fully elucidated.


Subject(s)
Amino Acid Sequence/genetics , Fusarium/enzymology , Protein Processing, Post-Translational/genetics , Sulfatases/genetics , Binding Sites , Cloning, Molecular , Gene Expression Regulation, Enzymologic , Pichia/genetics , Protein Structure, Quaternary , Substrate Specificity , Sulfatases/biosynthesis , Sulfatases/chemistry
14.
Biochimie ; 132: 54-65, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27984201

ABSTRACT

Here, we report the biochemical characterization of a novel α-l-fucosidase with broad substrate specificity (FpFucA) isolated from the mycelial fungus Fusarium proliferatum LE1. Highly purified α-l-fucosidase was obtained from several chromatographic steps after growth in the presence of l-fucose. The purified α-l-fucosidase appeared to be a monomeric protein of 67 ± 1 kDa that was able to hydrolyze the synthetic substrate p-nitrophenyl α-l-fucopyranoside (pNPFuc), with Km = 1.1 ± 0.1 mM and kcat = 39.8 ± 1.8 s-1. l-fucose, 1-deoxyfuconojirimycin and tris(hydroxymethyl)aminomethane inhibited pNPFuc hydrolysis, with inhibition constants of 0.2 ± 0.05 mM, 7.1 ± 0.05 nM, and 12.2 ± 0.1 mM, respectively. We assumed that the enzyme belongs to subfamily A of the GH29 family (CAZy database) based on its ability to hydrolyze practically all fucose-containing oligosaccharides used in the study and the phylogenetic analysis. We found that this enzyme was a unique α-l-fucosidase that preferentially hydrolyzes the α-(1 â†’ 4)-L-fucosidic linkage present in α-L-fucobiosides with different types of linkages. As a retaining glycosidase, FpFucA is capable of catalyzing the transglycosylation reaction with alcohols (methanol, ethanol, and 1-propanol) and pNP-containing monosaccharides as acceptors. These features make the enzyme an important tool that can be used in the various modifications of valuable fucose-containing compounds.


Subject(s)
Fungal Proteins/metabolism , Fusarium/enzymology , Polysaccharides/metabolism , alpha-L-Fucosidase/metabolism , Alcohols/metabolism , Amino Acid Sequence , Disaccharides/metabolism , Fucose/metabolism , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Fusarium/genetics , Glycosides/metabolism , Glycosylation , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Mass Spectrometry , Oligosaccharides/metabolism , Stereoisomerism , Substrate Specificity , Temperature , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/isolation & purification
15.
FEBS Open Bio ; 6(3): 168-78, 2016 03.
Article in English | MEDLINE | ID: mdl-27047745

ABSTRACT

An expansion of polyglutamine (polyQ) sequence in ataxin-3 protein causes spinocerebellar ataxia type 3, an inherited neurodegenerative disorder. The crystal structure of the polyQ-containing carboxy-terminal fragment of human ataxin-3 was solved at 2.2-Å resolution. The Atxn3 carboxy-terminal fragment including 14 glutamine residues adopts both random coil and α-helical conformations in the crystal structure. The polyQ sequence in α-helical structure is stabilized by intrahelical hydrogen bonds mediated by glutamine side chains. The intrahelical hydrogen-bond interactions between glutamine side chains along the axis of the polyQ α-helix stabilize the secondary structure. Analysis of this structure furthers our understanding of the polyQ-structural characteristics that likely underlie the pathogenesis of polyQ-expansion disorders.

16.
FEBS J ; 282(23): 4515-37, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26367132

ABSTRACT

The ascomycete Geotrichum candidum is a versatile and efficient decay fungus that is involved, for example, in biodeterioration of compact discs; notably, the 3C strain was previously shown to degrade filter paper and cotton more efficiently than several industrial enzyme preparations. Glycoside hydrolase (GH) family 7 cellobiohydrolases (CBHs) are the primary constituents of industrial cellulase cocktails employed in biomass conversion, and feature tunnel-enclosed active sites that enable processive hydrolytic cleavage of cellulose chains. Understanding the structure-function relationships defining the activity and stability of GH7 CBHs is thus of keen interest. Accordingly, we report the comprehensive characterization of the GH7 CBH secreted by G. candidum (GcaCel7A). The bimodular cellulase consists of a family 1 cellulose-binding module (CBM) and linker connected to a GH7 catalytic domain that shares 64% sequence identity with the archetypal industrial GH7 CBH of Hypocrea jecorina (HjeCel7A). GcaCel7A shows activity on Avicel cellulose similar to HjeCel7A, with less product inhibition, but has a lower temperature optimum (50 °C versus 60-65 °C, respectively). Five crystal structures, with and without bound thio-oligosaccharides, show conformational diversity of tunnel-enclosing loops, including a form with partial tunnel collapse at subsite -4 not reported previously in GH7. Also, the first O-glycosylation site in a GH7 crystal structure is reported--on a loop where the glycan probably influences loop contacts across the active site and interactions with the cellulose surface. The GcaCel7A structures indicate higher loop flexibility than HjeCel7A, in accordance with sequence modifications. However, GcaCel7A retains small fluctuations in molecular simulations, suggesting high processivity and low endo-initiation probability, similar to HjeCel7A. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 5AMP, 4ZZV, 4ZZW, 4ZZT, and 4ZZU. The Geotrichum candidum GH family 7 cellobiohydrolase nucleotide sequence is available in GenBank under accession number KJ958925. ENZYMES: Glycoside hydrolase family 7 reducing end acting cellobiohydrolase.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase , Geotrichum/enzymology , Molecular Dynamics Simulation , Amino Acid Sequence , Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulose 1,4-beta-Cellobiosidase/metabolism , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Protein Conformation , Sequence Alignment , Temperature
17.
Carbohydr Res ; 412: 43-9, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26005928

ABSTRACT

In the present work we suggest an efficient method, using the whole time course of the reaction, whereby parameters kcat, Km and product KI for the hydrolysis of a p-nitrophenyl glycoside by an exo-acting glycoside hydrolase can be estimated in a single experiment. Its applicability was demonstrated for three retaining exo-glycoside hydrolases, ß-xylosidase from Aspergillus awamori, ß-galactosidase from Penicillium sp. and α-galactosidase from Thermotoga maritima (TmGalA). During the analysis of the reaction course catalyzed by the TmGalA enzyme we had observed that a non-enzymatic process, mutarotation of the liberated α-d-galactose, affected the reaction significantly.


Subject(s)
Aspergillus/chemistry , Glycosides/chemistry , Kinetics , Penicillium/chemistry , Thermotoga maritima/chemistry , alpha-Galactosidase/chemistry , beta-Galactosidase/chemistry , Galactose/chemistry , Hydrolysis , Xylosidases/chemistry
18.
Biotechnol J ; 10(1): 210-21, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25367775

ABSTRACT

Synergistic action of exo- and endohydrolazes is preferred for effective destruction of biopolymers. The main purpose of the present work was to develop an efficient tool for degradation of xylan. Macroporous lab-made monolithic columns and commercial CIM-Epoxy disk were used to immobilize the recombinant ß-xylosidase from Aspergillus awamori and Grindamyl ß-xylanase. The efficiency of xylan degradation using the low-loaded ß-xylosidase column appeared to be four times higher than for the in-solution process and about six times higher than for the high-loaded bioreactor. Disk bioreactor with the Grindamil ß-xylanase operated in a recirculation mode has shown noticeable advantages over the column design. Additionally, a system comprised of two immobilized enzyme reactors (IMERs) was tested to accelerate the biopolymer hydrolysis, yielding total xylan conversion into xylose within 20 min. Fast online monitoring HPLC procedure was developed where an analytical DEAE CIM disk was added to the two-enzyme system in a conjoint mode. A loss of activity of immobilized enzymes did not exceed 7% after 5 months of the bioreactor usage. We can therefore conclude that the bioreactors developed exhibit high efficiency and remarkable long-term stability.


Subject(s)
Aspergillus/enzymology , Bioreactors , Enzymes, Immobilized/metabolism , Fungal Proteins/metabolism , Xylosidases/metabolism , Aspergillus/genetics , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Pichia/genetics , Pichia/metabolism , Porosity , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xylans/chemistry , Xylans/metabolism , Xylosidases/chemistry , Xylosidases/genetics
19.
J Basic Microbiol ; 55(4): 471-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25346501

ABSTRACT

Enzymes capable of modifying the sulfated polymeric molecule of fucoidan are mainly produced by different groups of marine organisms: invertebrates, bacteria, and also some fungi. We have discovered and identified a new strain of filamentous fungus Fusarium proliferatum LE1 (deposition number in Russian Collection of Agricultural Microorganisms is RCAM02409), which is a potential producer of fucoidan-degrading enzymes. The strain LE1 (RCAM02409) was identified on the basis of morphological characteristics and analysis of ITS sequences of ribosomal DNA. During submerged cultivation of F. proliferatum LE1 in the nutrient medium containing natural fucoidan sources (the mixture of brown algae Laminaria digitata and Fucus vesiculosus), enzymic activities of α-L-fucosidase and arylsulfatase were inducible. These enzymes hydrolyzed model substrates, para-nitrophenyl α-L-fucopyranoside and para-nitrophenyl sulfate, respectively. However, the α-L-fucosidase is appeared to be a secreted enzyme while the arylsulfatase was an intracellular one. No detectable fucoidanase activity was found during F. proliferatum LE1 growth in submerged culture or in a static one. Comparative screening for fucoidanase/arylsulfatase/α-L-fucosidase activities among several related Fusarium strains showed a uniqueness of F. proliferatum LE1 to produce arylsulfatase and α-L-fucosidase enzymes. Apart them, the strain was shown to produce other glycoside hydrolyses.


Subject(s)
Arylsulfatases/metabolism , Fusarium/metabolism , Polysaccharides/metabolism , alpha-L-Fucosidase/metabolism , DNA, Ribosomal , Fucus , Fusarium/growth & development , Fusarium/isolation & purification , Laminaria , Nitrobenzenes/metabolism , Nitrophenols/metabolism , Sequence Analysis
20.
Carbohydr Res ; 401: 115-21, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25486100

ABSTRACT

Broad regioselectivity of α-galactosidase from Thermotoga maritima (TmGal36A) is a limiting factor for application of the enzyme in the directed synthesis of oligogalactosides. However, this property can be used as a convenient tool in studies of thermodynamics of a glycosidic bond. Here, a novel approach to energy difference estimation is suggested. Both transglycosylation and hydrolysis of three types of galactosidic linkages were investigated using total kinetics of formation and hydrolysis of pNP-galactobiosides catalysed by monomeric glycoside hydrolase family 36 α-galactosidase from T. maritima, a retaining exo-acting glycoside hydrolase. We have estimated transition state free energy differences between the 1,2- and 1,3-linkage (ΔΔG(‡)0 values were equal 5.34 ± 0.85 kJ/mol) and between 1,6-linkage and 1,3-linkage (ΔΔG(‡)0=1.46 ± 0.23 kJ/mol) in pNP-galactobiosides over the course of the reaction catalysed by TmGal36A. Using the free energy difference for formation and hydrolysis of glycosidic linkages (ΔΔG(‡)F-ΔΔG(‡)H), we found that the 1,2-linkage was 2.93 ± 0.47 kJ/mol higher in free energy than the 1,3-linkage, and the 1,6-linkage 4.44 ± 0.71 kJ/mol lower.


Subject(s)
Biocatalysis , Disaccharides/chemistry , Disaccharides/metabolism , Thermotoga maritima/enzymology , alpha-Galactosidase/metabolism , Glycosylation , Hydrolysis , Kinetics , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...