Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 25(6): 1442-1448, 2019 12.
Article in English | MEDLINE | ID: mdl-31134875

ABSTRACT

The difference in the defect structures produced by different ion masses in a tungsten lattice is investigated using 80 MeV Au7+ ions and 10 MeV B3+ ions. The details of the defects produced by ions in recrystallized tungsten foil samples are studied using transmission electron microscopy. Dislocations of type b = 1/2[111] and [001] were observed in the analysis. While highly energetic gold ion produced small clusters of defects with very few dislocation lines, boron has produced large and sparse clusters with numerous dislocation lines. The difference in the defect structures could be due to the difference in separation between primary knock-on atoms produced by gold and boron ions.

2.
J Phys Condens Matter ; 31(7): 075401, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30523956

ABSTRACT

Piezoelectric and other physical properties are significantly enhanced at (or near) a morphotropic phase boundary (MPB) in ferroelectrics. MPB materials have attracted significant attention owing to both fundamental physics as well as the possibility of well-regulated energy and information storage devices which are dominated by lead (Pb)-based materials. Here, we report the crystal structure, Raman spectra, dielectric constant and polarization near the MPB of lead free (1 - x) Na0.5Bi0.5TiO3 - x BaTiO3 (0.00 ⩽ x ⩽ 0.10) solid-solution, prepared by sol-gel auto combustion technique and sintered by microwave sintering technique. With the addition of BaTiO3 into Na0.5Bi0.5TiO3, it induces a structural phase transition from R3c (a single phase) to R3c + P4mm (a dual phase) close to x = 0.06 and 0.07 and transform to a high symmetry tetragonal phase P4mm at higher compositions (x = 0.08 to 0.10) as evident from our x-ray Rietveld refinement and Raman spectroscopic results. We perform first-principles calculations based on density functional theory that confirm a structural transition from a rhombohedral to a tetragonal phase under increasing x. In the prepared solid solution, an anomalous enhancement of remnant polarization ([Formula: see text]) was observed for x = 0.06 and 0.07, which has been explained based on the existence of the MPB. On the other hand, the value of coercive field [Formula: see text] was found to be decreased linearly from x = 0.00 to 0.06; it is constant for higher compositions. Further details of the ferroelectric properties on the electric field poled samples have been studied and compared with the as-grown (unpoled) samples.

3.
Nanotechnology ; 29(46): 464001, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30168448

ABSTRACT

We demonstrate a highly selective and reversible NO2 resistive gas sensor using vertically aligned MoS2 (VA-MoS2) flake networks. We synthesized horizontally and vertically aligned MoS2 flakes on SiO2/Si substrate using a kinetically controlled rapid growth CVD process. Uniformly interconnected MoS2 flakes and their orientation were confirmed by scanning electron microscopy, x-ray diffraction, Raman spectroscopy and x-ray photoelectron spectroscopy. The VA-MoS2 gas sensor showed two times higher response to NO2 compared to horizontally aligned MoS2 at room temperature. Moreover, the sensors exhibited a dramatically improved complete recovery upon NO2 exposure at its low optimum operating temperatures (100 °C). In addition, the sensing performance of the sensors was investigated with exposure to various gases such as NH3, CO2, H2, CH4 and H2S. It was observed that high response to gas directly correlates with the strong interaction of gas molecules on edge sites of the VA-MoS2. The VA-MoS2 gas sensor exhibited high response with good reversibility and selectivity towards NO2 as a result of the high aspect ratio as well as high adsorption energy on exposed edge sites.

4.
J Phys Chem B ; 113(34): 11632-41, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19653685

ABSTRACT

Poly(vinylidene fluoride-co-hexafluoropropylene) (HFP) nanocomposites with layered silicate have been synthesized via the melt extrusion route. The intriguing nanostructure, crystalline structure, morphology, and thermal and mechanical properties of the nanocomposites have been studied and compared critically with pristine polymer. HFP forms intercalated or partially exfoliated nanostructure (or both) in the presence of nanoclay, depending on its concentration. The bombardment of high-energy swift, heavy ions (SHI) on HFP and its nanocomposites has been explored in a wide range of fluence. The nanoclay induces the piezoelectric beta-phase in bulk HFP, and the structure remains intact upon SHI irradiation. SHI irradiation degrades pure polymer, but the degradation is suppressed radically in nanocomposites. The heat of fusion of pristine HFP has drastically been reduced upon SHI irradiation, whereas there are relatively minute changes in nanocomposites. The coarsening on the surface and bulk of HFP and its nanocomposite films upon SHI irradiation has been measured quantitatively by using atomic force microscopy. The degradation has been considerably suppressed in nanocomposites through cross-linking of polymer chains, providing a suitable high-energy, radiation-resistant polymeric material. A mechanism for this behavior originating from the swelling test and gel fraction (chemical cross-linking) as a result of SHI irradiation has been illustrated.


Subject(s)
Ions/chemistry , Nanostructures/chemistry , Polyvinyls/chemistry , Silicates/chemistry , Crystallography, X-Ray , Fullerenes/chemistry , Models, Molecular , Particle Size , Polyvinyls/chemical synthesis , Surface Properties
5.
ACS Appl Mater Interfaces ; 1(2): 311-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-20353218

ABSTRACT

Poly(vinylidene fluoride) (PVDF) has been made radiation-resistant through a nanocomposite (NC) route. The bombardment of high-energy swift heavy ions (SHI) on PVDF and its NCs with layered silicate has been studied in a range of fluences. The degradation of PVDF after SHI irradiation is suppressed radically in NCs. PVDF forms an intercalated nanostructure in the presence of nanoclay and, further, the ion fluence raises the extent of intercalation. The crystallinity and the heat of fusion of pristine PVDF have drastically been reduced after SHI irradiation, while there are relatively small changes in NCs even at higher fluences. The metastable piezoelectric beta form of PVDF gets stabilized by the presence of layered silicate, and the structure is retained upon SHI irradiation. The clay platelets act as nucleating agents, and SHI irradiation causes two crystallization temperatures for the samples exposed to high fluences. The damages created on the surface and bulk of PVDF and its NC films upon SHI irradiation have been measured quantitatively by using atomic force microscopy. The pitting dimensions and degradation are enhanced significantly beyond 10(11) ions/cm(2) fluence for pristine PVDF, which limits the use of PVDF for any ion irradiation application. The degradation is considerably suppressed in NCs, providing a suitable high-energy radiation-resistant thermoplastic polymer.

SELECTION OF CITATIONS
SEARCH DETAIL
...